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THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK
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Abstract. The Fokker—Planck equation, or forward Kolmogorov equation, describes the evolu-
tion of the probability density for a stochastic process associated with an Ito stochastic differential
equation. It pertains to a wide variety of time-dependent systems in which randomness plays a role.
In this paper, we are concerned with Fokker—Planck equations for which the drift term is given by
the gradient of a potential. For a broad class of potentials, we construct a time discrete, iterative
variational scheme whose solutions converge to the solution of the Fokker—Planck equation. The
major novelty of this iterative scheme is that the time-step is governed by the Wasserstein metric on
probability measures. This formulation enables us to reveal an appealing, and previously unexplored,
relationship between the Fokker—Planck equation and the associated free energy functional. Namely,
we demonstrate that the dynamics may be regarded as a gradient flux, or a steepest descent, for the
free energy with respect to the Wasserstein metric.
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1. Introduction and overview. The Fokker—Planck equation plays a central
role in statistical physics and in the study of fluctuations in physical and biological
systems [7, 22, 23]. It is intimately connected with the theory of stochastic differential
equations: a (normalized) solution to a given Fokker—Planck equation represents the
probability density for the position (or velocity) of a particle whose motion is described
by a corresponding Ito stochastic differential equation (or Langevin equation). We
shall restrict our attention in this paper to the case where the drift coefficient is
a gradient. The simplest relevant physical setting is that of a particle undergoing
diffusion in a potential field [23].

It is known that, under certain conditions on the drift and diffusion coefficients,
the stationary solution of a Fokker—Planck equation of the type that we consider
here satisfies a variational principle. It minimizes a certain convex free energy func-
tional over an appropriate admissible class of probability densities [12]. This free
energy functional satisfies an H-theorem: it decreases in time for any solution of the
Fokker—Planck equation [22]. In this work, we shall establish a deeper, and appar-
ently previously unexplored, connection between the free energy functional and the
Fokker—Planck dynamics. Specifically, we shall demonstrate that the solution of the
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Fokker—Planck equation follows, at each instant in time, the direction of steepest
descent of the associated free energy functional.

The notion of a steepest descent, or a gradient flux, makes sense only in context
with an appropriate metric. We shall show that the required metric in the case of the
Fokker—Planck equation is the Wasserstein metric (defined in section 3) on probability
densities. As far as we know, the Wasserstein metric cannot be written as an induced
metric for a metric tensor (the space of probability measures with the Wasserstein
metric is not a Riemannian manifold). Thus, in order to give meaning to the assertion
that the Fokker—Planck equation may be regarded as a steepest descent, or gradient
flux, of the free energy functional with respect to this metric, we switch to a discrete
time formulation. We develop a discrete, iterative variational scheme whose solutions
converge, in a sense to be made precise below, to the solution of the Fokker—Planck
equation. The time-step in this iterative scheme is associated with the Wasserstein
metric. For a different view on the use of implicit schemes for measures, see [6, 16].

For the purpose of comparison, let us consider the classical diffusion (or heat)
equation

Ip(t, x)
ot
which is the Fokker—Planck equation associated with a standard n-dimensional Brow-
nian motion. It is well known (see, for example, [5, 24]) that this equation is the
gradient flux of the Dirichlet integral 3 [p. |Vp|? dz with respect to the L*(R™) met-
ric. The classical discretization is given by the scheme

= Ap(t,z), t€ (0,00), z€R",

Determine p*) that minimizes
S04 = oy + & [ V0P da

over an appropriate class of densities p. Here, h is the time step size. On the other
hand, we derive as a special case of our results below that the scheme

Determine p(k) that minimizes

(1) Ld(p*=Y, p)? + h/ plog p dx
]Rn

over all p € K,

where K is the set of all probability densities on R™ having finite second moments,
is also a discretization of the diffusion equation when d is the Wasserstein metric.
In particular, this allows us to regard the diffusion equation as a steepest descent
of the functional fRn plogp dr with respect to the Wasserstein metric. This re-
veals a novel link between the diffusion equation and the Gibbs-Boltzmann entropy
(= Jzn plogp dz) of the density p. Furthermore, this formulation allows us to at-
tach a precise interpretation to the conventional notion that diffusion arises from the
tendency of the system to maximize entropy.

The connection between the Wasserstein metric and dynamical problems involving
dissipation or diffusion (such as strongly overdamped fluid flow or nonlinear diffusion
equations) seems to have first been recognized by Otto in [19]. The results in [19]
together with our recent research on variational principles of entropy and free energy
type for measures [12, 11, 15] provide the impetus for the present investigation. The
work in [12] was motivated by the desire to model and characterize metastability
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and hysteresis in physical systems. We plan to explore in subsequent research the
relevance of the developments in the present paper to the study of such phenomena.
Some preliminary results in this direction may be found in [13, 14].

The paper is organized as follows. In section 2, we first introduce the Fokker—
Planck equation and briefly discuss its relationship to stochastic differential equations.
We then give the precise form of the associated stationary solution and of the free
energy functional that this density minimizes. In section 3, the Wasserstein metric is
defined, and a brief review of its properties and interpretations is given. The iterative
variational scheme is formulated in section 4, and the existence and uniqueness of its
solutions are established. The main result of this paper—mnamely, the convergence
of solutions of this scheme (after interpolation) to the solution of the Fokker—Planck
equation—is the topic of section 5. There, we state and prove the relevant convergence
theorem.

2. The Fokker—Planck equation, stationary solutions, and the free en-
ergy functional. We are concerned with Fokker—Planck equations having the form

) & — v (VU()p) + 5 B, pla,0) = (),
where the potential ¥(z) : R™ — [0,00) is a smooth function, § > 0 is a given
constant, and p°(z) is a probability density on R™. The solution p(t,z) of (2) must,
therefore, be a probability density on R"™ for almost every fixed time ¢. That is,
p(t,x) > 0 for almost every (t,z) € (0,00) x R", and [p, p(t,x) dz = 1 for almost
every t € (0, 00).

Tt is well known that the Fokker-Planck equation (2) is inherently related to the
Tto stochastic differential equation [7, 22, 23]

(3) dX(t) = =VU(X(t))dt + /26" dW (), X(0)=X".

Here, W (t) is a standard n-dimensional Wiener process, and X is an n-dimensional
random vector with probability density p. Equation (3) is a model for the motion
of a particle undergoing diffusion in the potential field ¥. X (¢) € R™ then represents
the position of the particle, and the positive parameter 3 is proportional to the in-
verse temperature. This stochastic differential equation arises, for example, as the
Smoluchowski-Kramers approximation to the Langevin equation for the motion of a
chemically bound particle [23, 4, 17]. In that case, the function ¥ describes the chemi-
cal bonding forces, and the term +/28~1 dW (t) represents white noise forces resulting
from molecular collisions [23]. The solution p(t, x) of the Fokker—Planck equation (2)
furnishes the probability density at time ¢ for finding the particle at position x.

If the potential ¥ satisfies appropriate growth conditions, then there is a unique
stationary solution ps(x) of the Fokker—Planck equation, and it takes the form of the
Gibbs distribution [7, 22]

(4) ps(a) = Z~  exp(—B¥(x)),
where the partition function Z is given by the expression

Z = / exp(—0¥(z)) dx.

Note that, in order for equation (4) to make sense, ¥ must grow rapidly enough to
ensure that Z is finite. The probability measure ps(z) dx, when it exists, is the unique
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invariant measure for the Markov process X(t) defined by the stochastic differential
equation (3).

It is readily verified (see, for example, [12]) that the Gibbs distribution ps satisfies
a variational principle—it minimizes over all probability densities on R"™ the free
energy functional

(5) F(p) = E(p) + B7'S(p),

(6) E(p) := /n Up dx

plays the role of an energy functional, and

(7) S(0)i= [ plogp s

is the negative of the Gibbs-Boltzmann entropy functional.

Even when the Gibbs measure is not defined, the free energy (5) of a density p(t, z)
satisfying the Fokker—Planck equation (2) may be defined, provided that F(p°) is
finite. This free energy functional then serves as a Lyapunov function for the Fokker—
Planck equation: if p(t,x) satisfies (2), then F(p(¢,x)) can only decrease with time
[22, 14]. Thus, the free energy functional is an H-function for the dynamics. The
developments that follow will enable us to regard the Fokker—Planck dynamics as a
gradient flux, or a steepest descent, of the free energy with respect to a particular
metric on an appropriate class of probability measures. The requisite metric is the
Wasserstein metric on the set of probability measures having finite second moments.
We now proceed to define this metric.

3. The Wasserstein metric. The Wasserstein distance of order two, d(u1, p2),
between two (Borel) probability measures p; and uo on R™ is defined by the formula

®) dymopsf = _int [ oy pldady),
PEP(p1,12) J Rnx R

where P(u1, pi2) is the set of all probability measures on R™ x R™ with first marginal
p1 and second marginal ps, and the symbol | - | denotes the usual Euclidean norm
on R™. More precisely, a probability measure p is in P(u1, p2) if and only if for each
Borel subset A C R™ there holds

p(AXR") = p1(A4), p(R" x A) = pa(A).

Wasserstein distances of order g with ¢ different from 2 may be analogously defined
[10]. Since no confusion should arise in doing so, we shall refer to d in what follows
as simply the Wasserstein distance.

It is well known that d defines a metric on the set of probability measures p on R™
having finite second moments: [, |2|>u(dz) < oo [10, 21]. In particular, d satisfies
the triangle inequality on this set. That is, if u1, uo, and ug are probability measures
on R™ with finite second moments, then

9) d(p1, p3) < d(p, p2) + d(pe, ps) -

We shall make use of this property at several points later on.
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We note that the Wasserstein metric may be equivalently defined by [21]
(10) d(jur, i2)? = nf BIX — Y2,

where E(U) denotes the expectation of the random variable U, and the infimum is
taken over all random variables X and Y such that X has distribution p; and Y
has distribution po. In other words, the infimum is over all possible couplings of the
random variables X and Y. Convergence in the metric d is equivalent to the usual
weak convergence plus convergence of second moments. This latter assertion may be
demonstrated by appealing to the representation (10) and applying the well-known
Skorohod theorem from probability theory (see Theorem 29.6 of [1]). We omit the
details.

The variational problem (8) is an example of a Monge—Kantorovich mass transfer-
ence problem with the particular cost function c(z,y) = |z —y|? [21]. In that context,
an infimizer p* € P(u1, p2) is referred to as an optimal transference plan. When
and po have finite second moments, the existence of such a p* for (8) is readily verified
by a simple adaptation of our arguments in section 4. For a probabilistic proof that
the infimum in (8) is attained when p; and pg have finite second moments, see [10].
Brenier [2] has established the existence of a one-to-one optimal transference plan
in the case that the measures pu; and ps have bounded support and are absolutely
continuous with respect to Lebesgue measure. Caffarelli [3] and Gangbo and McCann
[8, 9] have recently extended Brenier’s results to more general cost functions ¢ and to
cases in which the measures do not have bounded support.

If the measures p1 and ps are absolutely continuous with respect to the Lebesgue
measure, with densities p; and p, respectively, we will write P(p1, p2) for the set of
probability measures having first marginal u; and second marginal ps. Correspond-
ingly, we will denote by d(p1, p2) the Wasserstein distance between p; and pg. This
is the situation that we will be concerned with in what follows.

4. The discrete scheme. We shall now construct a time-discrete scheme that is
designed to converge in an appropriate sense (to be made precise in the next section)
to a solution of the Fokker—Planck equation. The scheme that we shall describe
was motivated by a similar scheme developed by Otto in an investigation of pattern
formation in magnetic fluids [19]. We shall make the following assumptions concerning
the potential ¥ introduced in section 2:

U e C°(R");
(11) U(z) > 0 for allz € R";
(12) IVU(z)| < C(T(z)+1) for all z € R

for some constant C' < co. Notice that our assumptions on ¥ allow for cases in which
i} g €Xp(—BV¥) dx is not defined, so the stationary density ps given by (4) does not
exist. These assumptions allow us to treat a wide class of Fokker—Planck equations.
In particular, the classical diffusion equation % = 3871 Ap, for which ¥ = const., falls
into this category. We also introduce the set K of admissible probability densities:

K = {p: R™ — [0, 00) measurable / plx)yde =1,M(p) < oo} ,

where

Mip)= [ o pla)da.
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With these conventions in hand, we now formulate the iterative discrete scheme:

Determine p*) that minimizes
(13) 3d(p*=Y, p)2 + b F(p)
over all pe K.
Here we use the notation p(®) = p%. The scheme (13) is the obvious generalization of
the scheme (1) set forth in the Introduction for the diffusion equation. We shall now
establish existence and uniqueness of the solution to (13).
PROPOSITION 4.1. Given p° € K, there exists a unique solution of the scheme
(13).
Proof. Let us first demonstrate that S is well defined as a functional on K with

values in (—o0,4o00] and that, in addition, there exist & < 1 and C' < co depending
only on n such that

(14) S(p) > —C (M(p)+1)* forallpe K.

Actually, we shall show that (14) is valid for any « € (#_2, 1). For future reference,

we prove a somewhat finer estimate. Namely, we demonstrate that there exists a
C < oo, depending only on n and «, such that for all R > 0, and for each p € K,
there holds

(24n) a—n
2

(15) /Rn_B | min{p log p,0}| dz < C (RQIH) (M(p) +1)*,

where Bg denotes the ball of radius R centered at the origin in R™. Indeed, for a < 1
there holds

| min{z log z,0}| < Cz% forall z>0.

Hence by Holder’s inequality, we obtain

[ minfplogp. 0} do
SC’/ p~ dx
11—«

<c (/ . <x|21+1) dx) (M(p) + 1) .

On the other hand, for %~ > 3, we have

/ 1 fe= e < O 1 Ta%
s X — .
R"—Bp |x‘2+1 - R2+1

Let us now prove that for given p(*~1 € K, there exists a minimizer p € K of
the functional

(16) K3p— 5d(p* Y, p)* + hF(p).
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Observe that S is not bounded below on K and hence F' is not bounded below on K
either. Nevertheless, using the inequality

(17) M(p1) < 2M(po) +2d(po,p1)* for all pg,p1 € K

(which immediately follows from the inequality |y|* < 2|z|? + 2|z — y|? and from the
definition of d) together with (14) we obtain

3d(p*V,p)* + hF(p)

1) 'F 1M — $MEE) + s(p)

(14)
> 1M(p) — C(M(p)+1)* — I M(p* ) forallpe K,

which ensures that (16) is bounded below. Now, let {p,} be a minimizing sequence
for (16). Obviously, we have that

(19) {S(p,)}, is bounded above,
and according to (18),
(20) {M(py)}, is bounded.

The latter result, together with (15), implies that

{/ | min{p, log p,,0}| dm} is bounded,
R™ v

which combined with (19) yields that

{ max{p, logp,,0} dm} is bounded .
]Rn

v

As z — max{zlog z,0}, z € [0, 00), has superlinear growth, this result, in conjunction
with (20), guarantees the existence of a p(*) € K such that (at least for a subsequence)

(21) py = p®) i LYR™).
Let us now show that

(22) S(p*)) < liminf S(p,).

v]oo

As [0,00) 5 z + zlogz is convex and [0,00) 3 z — max{zlogz,0} is convex and
nonnegative, (21) implies that for any R < oo,

vToo

(23) / p") log p®) dz < liminf/ pu log p, dz
BR BR

(24) / max{p(k) logp(k),O} dr < liminf/ max{p, log p,,0} dx.
R"—Bpg vioo Jrn_Bg

On the other hand we have according to (15) and (20)

(25) lim sup/ | min{p, logp,,0}| dr = 0.
RToo veN " —Bgr
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Now observe that for any R < co, there holds

s < [

p*) log p®) dx + / max{p®* log p*, 0} du,
Br

R"—Bg

which together with (23), (24), and (25) yields (22).
It remains for us to show that

(26) E(p™) < liminf E(py),
(27) d(p*=1, pM)? < Timinf (oY, p,)?.

Equation (26) follows immediately from (21) and Fatou’s lemma. As for (27), we
choose p, € P(p*=1) p,) satisfying

R =

/ e uPpdzdy) < a0 +

By (20) the sequence of probability measures {p, dz},1o0 is tight, or relatively com-
pact with respect to the usual weak convergence in the space of probability measures
on R™ (i.e., convergence tested against bounded continuous functions) [1]. This, to-
gether with the fact that the density p*~1 has finite second moment, guarantees
that the sequence {p, }, 100 Of probability measures on R™ x R™ is tight. Hence, there
is a subsequence of {p, },10 that converges weakly to some probability measure p.
From (21) we deduce that p € P(p*=1, p(*)). We now could invoke the Skorohod
theorem [1] and Fatou’s lemma to infer (27) from this weak convergence, but we prefer
here to give a more analytic proof. For R < oo let us select a continuous function
nr:R™ — [0, 1] such that

ng = 1 inside of By and ng = 0 outside of Bap.

We then have

/ nr(x) nr(y) |z — y|* p(da dy)
R"X R

(28) = lim nr(x) nr(y) [z — yl* p, (dz dy)
UTOO R x R™

< lirr%inf d(p*=V p,)?

for each fixed R < co. On the other hand, using the monotone convergence theorem,
we deduce that

d(p*, p)? < / & — y[? p(da dy)
R"xR™
= lim nr(z) nr(y) |z — y|* p(dz dy)

Rloo Jpnx pn

which combined with (28) yields (27).

To conclude the proof of the proposition we establish that the functional (16) has
at most one minimizer. This follows from the convexity of K and the strict convexity
of (16). The strict convexity of (16) follows from the strict convexity of S, the linearity
of E, and the (obvious) convexity over K of the functional p s d(p*~1), p)2. |
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Remark. One of the referees has communicated to us the following simple estimate
that could be used in place of (14)—(15) in the previous and subsequent analysis: for
any {2 C R™ (in particular, for 2 = R™ — Bg) and for all p € K there holds

@ 1
(29) /|min{plogp,0}\daz§0/e*‘7‘ dx+eM(p)+—/pdz
Q 0 de Jq

for any € > 0. To obtain the inequality (29), select C' > 0 such that for all z € [0, 1],
we have z|logz| < Cy/z. Then, defining the sets Qy = QN {p < exp(—|z|)} and
O = QN {exp(—|z]) < p < 1}, we have

/ | min{plog p, 0}| dz — / pl(log p)—| da + / pl(log p)_ | de
Q Qo Q1

SC/e_%dx%-/ |x|pde .
Q Q

The desired result (29) then follows from the inequality |z| < €|z|? + 1/(4e) for € > 0.

5. Convergence to the solution of the Fokker—Planck equation. We come
now to our main result. We shall demonstrate that an appropriate interpolation of
the solution to the scheme (13) converges to the unique solution of the Fokker—Planck
equation. Specifically, the convergence result that we will prove here is as follows.

THEOREM 5.1. Let p° € K satisfy F(p°) < oo, and for given h > 0, let {Pﬁbk)}keN
be the solution of (13). Define the interpolation pp: (0, 00)xR™ — [0, 00) by

pn(t) = p for t € [kh,(k+1)h) and k € NU{0}.
Then as h | 0,
(30) on(t) — p(t)  weakly in L*(R™)  for all t € (0,00),
where p € C((0,00)xR™) is the unique solution of

(31) D~ aiv(pve) + 578,

with initial condition

(32) p(t) — p° strongly in L*(R™) for t]0
and
(33) M(p), E(p) € L*((0,T)) forall T < oco.

Remark. A finer analysis reveals that
pn — p strongly in L*((0, T)xR™) for all T < co.

Proof. The proof basically follows along the lines of [19, Proposition 2, Theorem
3]. The crucial step is to recognize that the first variation of (16) with respect to the
independent variables indeed yields a time-discrete scheme for (31), as will now be
demonstrated. For notational convenience only, we shall set 8 = 1 from here on in.
As will be evident from the ensuing arguments, our proof works for any positive 5. In
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fact, it is not difficult to see that, with appropriate modifications to the scheme (13),
we can establish an analogous convergence result for time-dependent f.
Let a smooth vector field with bounded support, £ € C§°(R™,R"™), be given, and
define the corresponding fluz {®,},cr by
0, P, = £o®, forallTeR and Py = id.

For any 7 € R, let the measure p,(y) dy be the push forward of p*) () dy under ..
This means that

(34) /npf(y) C(y)dy = /np(’“)(y)é(fl%(y))dy for all ¢ € C§(R™).

As @, is invertible, (34) is equivalent to the following relation for the densities:
(35) det V@, p, 0 ®, = p) .

By (16), we have for each 7 > 0

(36) % ((% d(p*=1, p,)* + hF(pT)) - (% d(p*=1, p™)? + hF(p““)))) > 0,

which we now investigate in the limit 7 | 0. Because ¥ is nonnegative, equation (34)
also holds for ( = V¥, i.e.,

/n pr(y) U(y)dy = / P (y) (D~ (y)) dy .
This yields

L (B0 - BG™) = [

Observe that the difference quotient under the integral converges uniformly to V¥(y)-£(y),
hence implying that

(T(2,(y)) — V() pM(y)dy.

S =

(37) & B0 = [ TUwEw) D) dy.

Next, we calculate % [S(pr)],_y- Invoking an appropriate approximation argument

(for instance approximating log by some function that is bounded below), we obtain

/ pr(y) log(p-(y)) dy
RTL

(39 /R () log(pr (- () dy

(
(k)

Therefore, we have

L (S(pr) = S(p™)) = —/np(’“)(y)% log(det V- (y)) dy .



VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION 11
Now using
d .
E[detvq)ﬂ' (y)}q—:o = divé(y),

together with the fact that &y = id, we see that the difference quotient under the
integral converges uniformly to div€, hence implying that

(38) A Sty = — [ o dive dy.

Now, let p be optimal in the definition of d(p* =1, p(¥))? (see section 3). The formula

/ C(z,y) pr(de dy) = / (&, @, (y)) plda dy) , ¢ € COR™xR™)
RMX R

R X R™

then defines a p, € P(p*~1, p,). Consequently, there holds
L (30,02 - b, f9P)

LG9 (y) — 2l — 5y — ) p(dzdy),
R'IT/XR"'L

IN

which implies that

limlsoup% (% d(p(k71)7p7)2 _ %d(p(kA)’p(k))z)

(39) < [ w-otwsd).

We now infer from (36), (37), (38), and (39) (and the symmetry in £ — —¢) that

— ) dzx d h VU-£ —dive) p* dy = 0
wy [ eowtndn) + b [ (Ve dive) o dy
for all £ € C°(R",R").

Observe that because p € P(p*~1) p()) there holds

/ (p®) — =Dy ¢ dy — / (y— w)-VC(y)p(dxdy)‘
n Rn xR

[ €= c@) + - ) Vo) sl dy>]
R™x R"™

<

DO

sup | V(| ly — x| p(da dy)
R Rnx R®

= 3 S};{ylvzéld(p('“’l),p(’“))2

=

for all ¢ € C§°(R™). Choosing & = V( in (40) then gives

(4]_) /w {% (p(k) _ p(k—l)) ¢+ (V\I/VC _ AC) p(k)} dy‘
1
2

sup|VZ¢| £ d(p*1, p*N)?2 for all ¢ € C5°(R™).
Rn
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We wish now to pass to the limit h | 0. In order to do so we will first establish
the following a priori estimates: for any T' < oo, there exists a constant C' < oo such
that for all N € N and all h € [0,1] with N h < T, there holds

(42) M( Ny <,
(43) max{ph N) log ph 0} dr < C,
R’V‘L

(44) E(p") < C,

N
(45) S dp Y, o < Ch

k=1
Let us verify that the estimate (42) holds. Since p,(l ~Y is admissible in the variational

principle (13), we have that
k k k k—

which may be summed over k to give
N

k— k N
(46) ST dp o)+ F(oY) < F(p).
k=1

As in Proposition 4.1, we must confront the technical difficulty that F' is not bounded
below. The inequality (42) is established via the following calculations:

(17)
M(pY) < 2d(p", pgf“) + 2M(p°)

<2N2d (=1 o029 M (p0)

< 4RN (F(") = F(ofM)) + 2M(")

T (R0 0 ) + 1))+ 2M(0),

which clearly gives (42). To obtain the second line of the above display, we have made
use of the triangle inequality for the Wasserstein metric (see equation (9)) and the
Cauchy-Schwarz inequality. The estimates (43), (44), and (45) now follow readily
from the bounds (14) and (15), the estimate (42), and the inequality (46), as follows:

max{ph )logp ,0bdz < S(p (N)) + / \mln{ph )logp(N) 0} dz
Rn R

(15)

< S + O M) +1)°

< F(oM) + ¢ (M) + 1)

(46)
< F(°) + ¢ (M) + 1)7;

E@N) = F(p™) — S
(1§4) F(p™) + ¢ (MM + 1)
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S D )2 (46) 0 (N)
> dpy V.0 SQh(F(p)—F(ph ))
k=1

(14)

< 2 (F(*) + €M) +1)7) .
Now, owing to the estimates (42) and (43), we may conclude that there exists a
measurable p(t, z) such that, after extraction of a subsequence,
(47) pn — p weakly in L'((0,T)xR") forall T < co.
A straightforward analysis reveals that (42), (43), and (44) guarantee that
p(t) e K forae. .t € (0,00),
(48)
M(p), E(p) € L>=((0,T)) foralT < co.

Let us now improve upon the convergence in (47) by showing that (30) holds. For
a given finite time horizon T' < oo, there exists a constant C' < oo such that for all
N,N’" € Nand all h € [0,1] with Nh <T, and N'h <T, we have

o, o) < CIN'h— N h|.

This result is obtained from (45) by use of the triangle inequality (9) for d and
the Cauchy—Schwarz inequality. Furthermore, for all p,p’ € K,p € P(p,p’), and
¢ € C§°(R™), there holds

o da — /R Cpde

/R ) - C(y))p(da:dy)’

Rn

< sup |V(| |z — y| p(dx dy)
R RnxR"

2

< sup V(| ( / |o:y|2p<da:dy>) ,
Rn Rnx Rn

so from the definition of d we obtain
Cfdn — [ Cpis
R’!‘L Rn

Hence, it follows that

< sup V(| d(p,p') for p,p’ € K and ¢ € C5°(R").
R’V‘L

N[

Con(t)dz — [ Cpn(t) dz| < Csup|VC] (|t — 1] + )
R» R" n
for all ¢,¢ € (0,T), and ¢ € C°(R™) .
Let ¢t € (0,7) and ¢ € C§°(R™) be given, and notice that for any § > 0, we have

(49)

Cpn(t) do — . Cp(t) da

RTL
t+6
< | cotvyde =& [ [ contr)dnar
R t—6 JRn
t+6 t+6
+ 217/ Cph()dxdT—ﬁ/ Cp(r) dz dr
t—6 JRn t—6 JR™
t+6
+ ﬁ/ Cp(r)de dr — Cp(t) dx
t—s JRn Rn
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According to (49), the first term on the right-hand side of this equation is bounded
by

C sup |VC| (6 +h)?,
RTL

and owing to (47), the second term converges to zero as h | 0 for any fixed 6 > 0. At
this point, let us remark that from the result (47) we may deduce that p is smooth on
(0,00)xR™. This is the conclusion of assertion (a) below, which will be proved later.
From this smoothness property, we ascertain that the final term on the right-hand
side of the above display converges to zero as 6 | 0. Therefore, we have established
that

(50) Cpn(t) dz — Cp(t) de  for all ¢ € C°(R™).
R R

However, the estimate (42) guarantees that M (pp(¢t)) is bounded for h | 0. Conse-
quently, (50) holds for any ¢ € L*°(R"™), and therefore, the convergence result (30)
does indeed hold.

It now follows immediately from (41), (45), and (47) that p satisfies
—/ p(0:¢ — VIU-V(+ AQ) dxdt = / oY ¢(0) dz,
(51) (0,00) X R™
for all ¢ € C§°(RxR™).

In addition, we know that p satisfies (33). We now show that
(a) any solution of (51) is smooth on (0, 00)xR™ and satisfies equation (31);
(b) any solution of (51) for which (33) holds satisfies the initial condition (32);
(c) there is at most one smooth solution of (31) which satisfies (32) and (33).
The corresponding arguments are, for the most part, fairly classical.
Let us sketch the proof of the regularity part (a). First observe that (51) implies

[ e ctn) do - /( P O TV AQ) e

(52) - / plto) C(to) da
R’n
for all ( € C°(RxR"™) and a.e. 0 <ty <t;.

We fix a function n € C§°(R™) to serve as a cutoff in the spatial variables. It
then follows directly from (52) that for each ¢ € C§°(RxR"™) and for almost every
0 <ty < t1, there holds

/ np(t) () de — / 0o (D¢ + AQ) dedt
R (to,t1) X R"

= p (An—VU.Vn) (dxdt

(53) (to,t1) X R™
+ p (2Vn—nVU).-V{dzxdt
(to,t1) X R™
+ np(to) ((to) do .
Rn

Notice that for fixed (¢1,21) € (0,00)xR™ and for each § > 0, the function

C(tr) = Gt +6 —t,x —xq)
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is an admissible test function in (53). Here G is the heat kernel
(54) G(t,z) =t~ 2 g(t_%x) with g(z) = (2r)" 2 exp(—1 |z[?).

Inserting (s into (53) and taking the limit ¢ | 0, we obtain the equation

(o)) = / p(t) (Ay — VU-V)] < Gty — ) dt
(55) + /tl [0(t) 2V — n V)] % VC(t: — 1) dt

+ (pn)(to) * G(t1 — tg) for ae. 0 <ty < iy,

where * denotes convolution in the z-variables. From (55), we extract the following
estimate in the LP-norm:

[(om)(t)llLr = / 1||P(t) (An = VUV [|G(tr — 1)l e dt

to

ty
+ / lo(t) @V — V0|1 VG (tr — 0)l|1r dt

to
+ ||(p77)(to)HL1 ||G(t1 - t())”L:D for a.e. 0 <ty < ty.
Now observe that

1_1\yn
G =t% D% ||g|| 1o,
1n_ntl
IVG()||e, =t?>""2 |[Vg|lLr,
which leads to

1Gom) ()l e

t1—to
— o5 sup [lo(0) (= VT [ G E g
0

te(to,t1)

t1—to Ln_ ntl
+ess sup |p(t)(2Vn— nV\II)||L1/ tr2" 2 ||Vyg| L dt
te(to,t1) 0

+ ||(p77)(t0)\|L1 ||G(t1 — tO)HLP for a.e. 0 < to < t1.

For p < -5 the t-integrals are finite, from which we deduce that

p € LY ((0,00)xR™).

loc

We now appeal to the LP-estimates [18, section 3, (3.1), and (3.2)] for the potentials
in (55) to conclude by the usual bootstrap arguments that any derivative of p is in
LY ((0,00)xR™), from which we obtain the stated regularity condition (a).

We now prove assertion (b). Using (55) with tg = 0, and proceeding as above, we
obtain

IGpm)(t:) = (0°n) * G(t1)]| s

ty
— ess sup ||p(t) (A — VI-Vi) 11 / gl dt
te(0,t1) 0

t1
+ess sup ||p(t) 2V _nvq/)||L1/ 1= | Vgllp dt for all £ > 0
te(0,t1) 0
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and therefore,
(pm)(t) — (P°m) xG(t) — 0 in LY(R™) fort | 0.
On the other hand, we have
(P°n) xG(t) — p’n i L'(R") fort |0,
which leads to
(pn)(t) — p°n in LY(R™) fort | 0.

From this result, together with the boundedness of {M(p(¢))}+10, we infer that (32)
is satisfied.

Finally, we prove the uniqueness result (c) using a well-known method from the
theory of elliptic—parabolic equations (see, for instance, [20]). Let p1, p2 be solutions
of (32) which are smooth on (0,00)xR"™ and satisfy (32), (33). Their difference p
satisfies the equation

)
5? — div[p V¥ + Vp] = 0.

We multiply this equation for p by ¢j(p), where the family {¢s}s)0 is a convex and
smooth approximation to the modulus function. For example, we could take

0s5(z) = (22 +6%)%2.
This procedure yields the inequality

Otps(p)] — div[ps(p) VI + Vgs(p)]]
= —¢5(p) Vo> + (d5(p) p— ds(p)) AV

< (¢5(p) p— ds(p)) AV,

which we then multiply by a nonnegative spatial cutoff function n € C§°(R™) and
integrate over R™ to obtain

d

i | [ ostownas] + [ antote) (v - ) as
R R

< [ @) o= onlo)) avyda.
Integrating over (0,t) for given t € (0, 00), we obtain with help of (32)

ds(p(t))ndx + / bs(p(t)) (VU-Vn — An) dz dt
R™ (0,t) X R™

<[ G- 6s(p) Avndrr.
(0,t) X Rn
Letting 6 tend to zero yields
66 [ lOhnds+ [ )] (T6vy - A deds < 0.
" (0,t) X R™

According to (12) and (33), p and pVU are integrable on the entire R™. Hence, if we
replace n in (56) by a function ng satisfying

nr(z) = m (%) ,  where ni(x) =1 for |[x| <1, m(z)=0 for|z| > 2,

and let R tend to infinity, we obtain [, |p(t)| dr = 0. This produces the desired
uniqueness result. 0



1]
2]

3]

(4]

[6]
(7]
(8]
[9]
(10]
(11]

(12]

(13]

14]

[15]
[16]
[17]
18]
[19]
[20]
[21]
[22]
23]

[24]

VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION 17

Acknowledgments. The authors would like to thank the anonymous referees
for valuable suggestions and comments.

P
Y

REFERENCES

. BILLINGSLEY, Probability and Measure, John Wiley, New York, 1986.

. BRENIER, Polar factorization and monotone rearrangement of wvector-valued functions,
Comm. Pure Appl. Math., 44 (1991), pp. 375-417.

L. A. CAFFARELLI, Allocation maps with general cost functions, in Partial Differential Equa-

S.

R

S.

C

tions and Applications, P. Marcellini, G. G. Talenti, and E. Vesintini, eds., Lecture Notes
in Pure and Applied Mathematics 177, Marcel Dekker, New York, NY, 1996, pp. 29-35.
CHANDRASEKHAR, Stochastic problems in physics and astronomy, Rev. Mod. Phys., 15
(1942), pp. 1-89. ‘
. COURANT, K. FRIEDRICHS, AND H. LEwWY, Uber die partiellen Differenzgleichungen der
mathematischen Physik, Math. Ann., 100 (1928), pp. 1-74.
DEMOULINI, Young measure solutions for a monlinear parabolic equation of forward—
backward type, SIAM J. Math. Anal., 27 (1996), pp. 376-403.
. W. GARDINER, Handbook of stochastic methods, 2nd ed., Springer-Verlag, Berlin, Heidel-
berg, 1985.

W. GANGBO AND R. J. McCANN, Optimal maps in Monge’s mass transport problems, C. R.

Acad. Sci. Paris, 321 (1995), pp. 1653-1658.

W. GANGBO AND R. J. MCCANN, The geometry of optimal transportation, Acta Math., 177

C.

R.

R.

R.

©c B v »

(1996), pp. 113-161.

R. GIVENS AND R. M. SHORTT, A class of Wasserstein metrics for probability distributions,
Michigan Math. J., 31 (1984), pp. 231-240.

JORDAN, A statistical equilibrium model of coherent structures in magnetohydrodynamics,
Nonlinearity, 8 (1995), pp. 585-613.

JORDAN AND D. KINDERLEHRER, An extended variational principle, in Partial Differential
Equations and Applications, P. Marcellini, G. G. Talenti, and E. Vesintini, eds., Lecture
Notes in Pure and Applied Mathematics 177, Marcel Dekker, New York, NY, 1996, pp. 187—
200.

JORDAN, D. KINDERLEHRER, AND F. OTTO, Free energy and the Fokker—Planck equation,
Physica D., to appear.

JORDAN, D. KINDERLEHRER, AND F. OTTO, The route to stability through the Fokker—
Planck dynamics, Proc. First U.S.—China Conference on Differential Equations and Appli-
cations, to appear.

JORDAN AND B. TURKINGTON, Ideal magnetofluid turbulence in two dimensions, J. Stat.
Phys., 87 (1997), pp. 661-695.

KINDERLEHRER AND P. PEDREGAL, Weak convergence of integrands and the Young mea-
sure representation, SIAM J. Math. Anal., 23 (1992), pp. 1-19.

A. KRAMERS, Brownian motion in a field of force and the diffusion model of chemical
reactions, Physica, 7 (1940), pp. 284-304.

A. LADYZENSKAJA, V. A. SOLONNIKOV, AND N. N. URAL’CEVA, Linear and Quasi—Linear
Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.

. OTTO, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean—field theory,

Archive Rat. Mech. Anal., to appear.
. OTTO, L —contraction and uniqueness for quasilinear elliptic—parabolic equations, J. Differ-
ential Equations, 131 (1996), pp. 20-38.

. T. RACHEV, Probability metrics and the stability of stochastic models, John Wiley, New

York, 1991.
. RISKEN, The Fokker-Planck equation: Methods of solution and applications, 2nd ed.,
Springer-Verlag, Berlin, Heidelberg, 1989.

. ScHUSS, Singular perturbation methods in stochastic differential equations of mathematical

physics, STAM Rev., 22 (1980), pp. 119-155.

. C. STRIKWERDA, Finite Difference Schemes and Partial Differential Equations, Wardsworth

& Brooks/Cole, New York, 1989.



SIAM J. MATH. ANAL. (© 1998 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 18-29, January 1998 002

STABILITY OF A RELAXATION MODEL WITH A NONCONVEX
FLUX*

HAILIANG LIUt, JINGHUA WANG!, AND TONG YANGS$

Abstract. In this paper, we study the nonlinear stability of travelling wave solutions with shock
profile for a relaxation model with a nonconvex flux, which is proposed by Jin and Xin [Comm. Pure
Appl. Math., 48 (1995), pp. 555-563] to approximate an original hyperbolic system numerically
under the subcharacteristic condition introduced by T. P. Liu [Comm. Math. Phys., 108 (1987),
pp. 153-175]. The travelling wave solutions with strong shock profile are shown to be asymptotically
stable under small disturbances with integral zero using an elementary but technical energy method.
Proofs involve detailed study of the error equation for disturbances using the same weight function
introduced in [Comm. Math. Phys., 165 (1994), pp. 83-96].

Key words. relaxation model, stability, travelling wave
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1. Introduction. Relaxation occurs when the underlying material is in nonequi-
librium and usually takes the form of hyperbolic conservation laws with source terms.
Relaxation is often stiff when the relaxation rate is much shorter than the scales of
other physical quantities.

The relaxation limit for nonlinear systems of the following form was first studied
by Liu [4]:

atu + azf(uv U) 07
O + Opglu,v) = Leld=v

m(u)

(1.0)

provided that the travelling waves are weak and f(u,v.(u)) is a convex function. And
the subcharacteristic condition for stability was formulated in [4]. The dissipative
entropy condition was formulated for general nonlinear relaxation systems later by
Chen, Levermore, and Liu [1].

Recently, a class of relaxation models were proposed by Jin and Xin [10] to ap-
proximate the original conservation laws numerically. The special structure of these
relaxation systems enables one to solve them numerically with underresolved stable
discretization without using either Riemann solvers spatially or nonlinear systems of
algebraic equations solvers temporally.

In this paper, we study the following relaxation model introduced in [10]:

u+v, =0, x€ R,
vt + auy = — £ (v — f(u)),

- e

(1.1)
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with the initial data

(1.2) (u,v)(x,0) = (ug,v0)(x) = (ux,vs) asr — +oo, vy = f(uy),

where a is a positive constant satisfying

(13) —Va< f(u)<a

for all u under consideration. (1.3) is the subcharacteristic condition introduced by
Liu [4]. We will show that the travelling wave solutions are stable as e — 0.

In the relaxation limit, ¢ — 0T, the leading order of the relaxation system (1.1)
is

v = f(u)7
(1.4) u + f(u)y = 0.

In fact, (1.1) was the prototype of the relaxation model introduced in [10] to solve
(1.4) using a local relaxation approximation.
Using Chapman—Enskog expansion [4], the first-order approximation to (1.1) is

v=f(u) —e(a— f'(w)?)ue,
(1.5) up + f(u)e = e((a — f'(u)?)uz)s.

Since (1.5) is dissipative provided that condition (1.3) is satisfied, then similar to the
diffusion, the relaxation term has smoothing and dissipative effects for the hyperbolic
conservation laws. The stability of the viscous travelling waves with nonconvex flux
was investigated by many authors, cf. [2], [5], [7], [8], etc. Using a weight function
introduced in [7], we study the stability of strong travelling waves for the relaxation
model (1.1) with a nonconvex flux. The behavior of solutions as ¢ — 0 when subchar-
acteristic condition is violated was investigated by R. Leveque and J. Wang [3] under
the assumption that the relaxation term is linear.
Under the scaling (x,t) — (ex, et), equation (1.1) becomes

(1.6)

u +v, =0, x€R',
vy + au, = f(u) —v.

The behavior of the solution (u,v) of (1.1) and (1.2) at any fixed time t as e — 07 is
equivalent to the long time behavior of (u,v) of (1.6) as t — oo.

In section 2, we will show that there exist travelling wave solutions with shock
profile for (1.6), i.e.,

(u,v)(z,t) = (U, V)(x — st) = (U, V)(2), (U,V)(z)— (usx,vs) as z — Fo0o,

if the shock speed s lies between —y/a and y/a and (u_,u,) is an admissible shock
of (1.4), that is, the constants uy and s (shock speed) satisfy the Rankine-Hugoniot
condition

(1.7) sy —u) + flug) = fus) =0
and the entropy condition

<0 for uy <u<wu_,
>0 for u_ <u<wug.

(1.8) Qu) = f(u) — f(uz) _S(U_Ui){
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Note that the U component of a travelling wave solution of (1.6) is a travelling
wave solution of the viscous conservation law

(19) Ut + f(u)ac = HUzy

with 1 = a—s?. This also gives another justification of the dynamic subcharacteristic
condition s? < a [4].

The purpose of this paper is to show the stability of the strong travelling wave
satisfying s? < a for any nonconvex flux f which satisfies the entropy condition (1.7)
and (1.8); our result also gives a justification of relaxation schemes introduced in [4]
for the case of scalar nonconvex conservation laws.

Notation. Hereafter, C' denotes a generic positive constant. L? denotes the space
of square integrable functions on R with the norm

1/2
171 = ( / |f|2dx) .

Without any ambiguity, the integral region R will be omitted. H’(j > 0) denotes the
usual jth-order Sobolev space with the norm

j
f1la; = 11115 = <Z||3§f||2>
k=0

For a weight function w > 0, L2, denotes the space of measurable functions f satisfying
Vwf € L? with the norm

flo = </w(z)|f(x)2dz>l/2.

2. Preliminaries and theorem. We first state the existence of the travelling
wave solution with shock profile for the system (1.6). Substituting

(uav)(x,t) = (Uv V)(Z)a z = — st,

1/2

into (1.6), we have

o1 —sU, 4+ V., =0,

@1) SV 4 al. = f(U) -V,
hence

(2.2) (a—s)U, = f(U)-V.

Integrating the first equation of (2.1) over (fo0, z) and using (U, V)(£o00) = (u+,v+)
and vy = f(ug) yields

(2.3) —sU+V = —sux + vy = —sux + f(us).
Combining (2.2) and (2.3), we obtain
Q)
2.4 =
( ) UZ a— 827

where Q(U) = f(U) — f(ux) — s(U — ug) and
_ v v flus) — fluo)

Uy — U Uy — U
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Since (2.4) is a scalar ordinary differential equation of U, the trajectories satisfying
boundary conditions U(£o0) = u4 necessarily connect adjacent equilibria u_ and u. .
It is easy to check that there is a trajectory from u_ to uy if and only if condition
(ug — u,)gfgg) > 0 that holds for u lies strictly between uy and u_. By virtue of

5% < a, this implies

Qu)(uy —u-) >0

for u that lies strictly between uy and u_, i.e., if and only if

u_,x — st <0,
u =
Uy, z— st >0

is an admissible shock for (1.4).
Without loss of generality, we study only the following case:

(2.5) up <u— and U, <0.

Then the ordinary differential equation (2.4) with boundary condition U(+00) = uy
has a unique smooth solution. Moreover, if f'(uy) < s < f'(u-) or Q' (uy) # 0, then
QU) ~ —|U—u+|as U — ux. Hence |(U—ux,V—v1)(2)| ~ exp(—c+|z|) as z — +oo
for some constants ¢y > 0. Whileif s = f/'(u4) or Q' (us) =0, |(U—uy,V—vy)(2)] ~
2 as 2 400 provided Q(U) ~ —|U —uy|'T*+ for k. > 0. Note ky = n if
Q(uy) = =Q"(uy) =0and QU (uy) #0.

Thus we have the existence of travelling wave solutions.

LEMMA 2.1. Assume that Q(U) <0 for U € (uq,u_), s= M, vy =

Uy —U—
flus), and |QU)| ~ |U —uy|***+ as U — uy with ky > 0. Then there exists a
travelling wave solution (U, V)(x — st) of (1.1) with (U,V)(£o0) = (ux,vs), which is
unique up to a shift and the speed satisfies

(2.6) 52 < a.
Moreover, it holds as z — +o0
(U = wa, V = 0a) ()] ~ exp(—calzl) if f'(uy) <s < f'(u);

(U —uiV—v) (@) ~ 2 5 if 5= f'(uy).

For the initial disturbance, without loss of generality, we assume

+o00
2.7) / (o — U (2)dz = 0.

— 00

For a pair of travelling wave solutions given by Lemma 2.1, we let

xT
(28) n i) = ([ (w0~ 000 0 - 1))

—00
Our goal is to show that the solution (u,v)(x,t) of (1.6), (1.2) will approach the
travelling wave solution (U, V)(xz — st) as t — o0o; the main theorem is as follows.

THEOREM 2.2 (stability). Suppose that (1.7)-(1.8) hold and f'(u)? < a, where

a > 0 is a suitably large constant and f(u) is a smooth function. Let (U,V)(z — st)
be a travelling wave solution determined by (2.7) with speed s* < a, and assume that
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ug — U is integrable on R and ¢g € H3,vy € H?. Then there exists a constant g > 0
independent of (ux,vy) such that if

N(0) = [|uo = U,v0 = V|2 + [I¢0, thol| < €0,
the initial value problem (1.6), (1.2) has a unique global solution (u,v)(x,t) satisfying
(u—U,v—V) e C®0,00; H*) N L*(0, 00; H?).
Furthermore, the solution satisfies

(2.9) sullg (u,v)(z,t) — (U, V)(x — st)] - 0 as t — +oo.

3. Reformulation of the problem. The proof of Theorem 2.2 is based on L?
energy estimates. We first rewrite the problem (1.6), (1.2) using the moving coordinate
z = x — st. Under the assumption of (2.7), we will look for a solution of the following
form:

(3'1) (u,v)(:mt) = (U7 V)(Z) + (¢z7¢)<27t)7

where (¢,) is in some space of integrable functions which will be defined later.
We substitute (3.1) into (1.6), by virtue of (2.1), and integrate the first equation
once with respect to z; the perturbation (¢, ) satisfies

¢t—3¢z+¢:07
wt_swz"_a(bzz:f(U+¢z)_f(U)_"/]-

The first equation of (3.2) gives

(3.3) v =—(pr — 5¢.).
Substituting (3.3) into the second equation of (3.2), we get a closed equation for ¢:

(34) L(¢) = (d)t - s¢z)t - s(¢t - 5¢z)z - a¢zz + ¢t + )‘Qsz - _F(U; ¢z)7

where F(U,¢,) = f(U+¢,)— f(U) = f'(U)¢p. = O(1)(¢?) is a higher order term and
A=Q(U) = f'(U) —s.

The corresponding initial data for (3.4) becomes

(3:5) ¢(2,0) = do(2), 61(2,0) = s¢(2) — tho = b1(2).

The asymptotic stability of the profile (U, V) means that the perturbation (¢.,1))
decays to zero as t — oco. The left-hand side of (3.4) contains a first-order term with
speed A which plays the essential role of governing the large-time behavior of the
solution.

Now, we introduce the solution space of the problem (3.4), (3.5) as follows:

X(0,T) = {é(z,t): € C0,T); H*)NC0,T; H?), (¢.,¢:) € L*(0,T; H?)},

(3.2)

with 0 < T' < 4+00. By virtue of (3.3), we have
¢ € CY([0,T); H*) N L*(0, T; H?).
By the Sobolev embedding theorem, if we let

N(t) = sup {[[6(7)lls + lloe(r)ll2},
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then

(36) Sgg{‘@ﬂv|¢Z|a|¢zza|¢t|v|¢tz|} S CN(t)

Thus Theorem 2.2 is a consequence of the following theorem.
THEOREM 3.1. Under the conditions of Theorem 2.2, there exists a positive con-
stant 81 such that if

(3.7) N(0) = |[¢oll3 + |[1]]2 < 61,

then the problem (3.4), (3.5) has a unique global solution ¢ € X (0,400) satisfying

(3-8) 16115 + [e]3 +/O (¢, ¢2)(7)[[3dT < CN(0)

fort € ]0,400). Furthermore,

(3.9) sup |(¢z, t)(2,t)] = 0 as t — oc.
ZER

For the solution ¢ in the above theorem, we define (¢, 1) by (3.3). Then it becomes
a global solution of the problem (3.2) with (¢, %)(z,0) = (¢o,%0)(z), and consequently
we have the desired solution of the problem (1.6), (1.2) through the relation (3.1). On
the other hand the solution of (1.6) is unique in the space C°(0,7; H?). Therefore
Theorem 2.2 follows from Theorem 3.1. Global existence for ¢ will be derived from
the following local existence theorem for ¢ combined with an a priori estimate. (3.8)
gives

(3.10) 16,612 — 0 as t — oo,

from which we have

o7 + 92

/ (2¢t¢tz + 2¢z¢zz)(yat)dy

— 00

+00 1/2 +00 1/2
([ wrova) ([ whron) —o wiew

—00 —00

IN

PROPOSITION 3.2 (local existence). For any 69 > 0, there exists a positive con-
stant Ty depending on &y such that if ¢po € H> and ¢1 € H?, with N(0) < 6/2, then
the problem (3.4), (3.5) has a unique solution ¢ € X (0,Ty) satisfying

(3.11) N(t) < 2N(0)

for any 0 <t <Tj.
PROPOSITION 3.3 (a priori estimate). Let ¢ € X(0,T) be a solution for a positive
constant T'; then there exists a positive constant do independent of T such that if

N(t) < 8, t€10,T],

then ¢ satisfies (3.8) for any 0 <t <T.

Proposition 3.2 can be proved in the standard way, so we omit the proof; cf. [9].
To prove Proposition 3.3 is our main task in the following section.

Here we prove Theorem 3.1 by the continuation arguments based on Proposition
3.2 and Proposition 3.3.
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Proof of Theorem 3.1. By the definition of N (¢), we have
(3.12) N(t)* <2 sup [[[o(7)|5 + lloe(7)]I[3]-
0<r<t

Then the inequality (3.8) implies

(3.13) N(t) < V2CN(0).
Choose ¢; such that §; = min{%, 2%}; then the local solution of (3.4) can be

continued globally in time, provided the smallness condition N(0) < §; is satisfied.
In fact we have N(0) < §; < 62/2. Therefore, by Proposition 3.2, there is a positive
constant Tp = Tp(62) such that a solution exists on [0, Tp] and satisfies N (¢) < 2N (0) <
52 for t € [O,To}

Hence we can apply Proposition 3.3 with 7' = T and get the estimate (3.8), that
is, N(t) < V2CN(0) < % for t € [0,Tp). Then we apply Proposition 3.2 by taking
t = Ty as the new initial time. We have a solution on [Ty, 27,] with the estimate
N(t) < 2N(Tp) < b6 for t € [Ty, 2Tp]. Therefore N(t) < 8 holds on [0,2Tp]. Hence
this again gives the estimate (3.8) for ¢ € [0,2Tp]. In the same way we can extend the
solution to the interval [0, nTy] successively, n = 1,2,..., and get a global solution ¢.
This completes the proof of Theorem 3.1. ]

4. Energy estimates. In this section, we will complete the proof of our stability
theorem. We establish the basic L? estimate as follows.
LEMMA 4.1. There are positive constants C' such that if

_\/a<f/(u)<\/av UE(’LL+,U_),

and a is sufficiently large, then

2 2 t T 2 T t 2 2T
612 + [ (1) +/O (60 8:)rd +/0 /R|Uz|¢dd
(4.1) < {60l + lln2 + / /R FI(16] + (60, 6.)])dzdr}

holds for t € [0,T).

Proof. When f is a nonconvex function, the standard energy method used in
[6] does not work for our problem (3.4), (3.5). To overcome this difficulty, we use a
weight function w(U) introduced in [7] depending on the shock profile U.

First, by multiplying (3.4) by 2w(U)¢, we obtain

(4.2) 2w(U)¢p - L(¢) = —2Fw(U)¢.
The left-hand side of (4.2) can be reduced to
(4.3)

2[(e — 502) — 8(br — 562). — adzzJwe + 2(Pr + A )wo

= [2wd(dr — 562)]t — 2wdi(dr — 5¢.) — 25[we (P — 5¢.)]-
+25w.B(dr — 562) + 25w (D1 — 562) — 2a(wP.). + 2awe?
+Haw,¢?), — aw,.¢* + (wd?); + Mwe?). — ¢*(Mw).

= [w¢2 + 2w (¢ — 86.)]r — 2w(Pr — Sd)Z)Q + 2aw¢§ - awzz¢2
*()‘w)ngQ + 5w2(¢2)t - 52{wz(¢2)}z + sw..¢°
H{ =250 (91 — 562) = 20w + aw.¢” + Mwep?}.

= [we? + 2wP(dr — 56.) + sw. 0] — 2w(dy — 56.)? + 2awe? + AP* + {-- -}
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here A = (5?2 — a)w,, — (\w),, {---}. denotes the terms which will disappear after
integration with respect to z € R.
Secondly, we calculate

(4.4) 2(py — s )w - L(p) = —2F (¢py — s¢,)w.
The left-hand side of (4.4) is

2[(¢r — 5¢2)t — 8(Pr — 5¢2). — ag..Jw(pr — 5¢.)
+2w(¢y — 5¢.) (¢ — 5. + ['(U)d-)
= [w(gs — $¢2)%]¢ — slw(de — 5¢.)°]. + sw (¢ — 5¢-)
—2a[we.(pr — 5¢.)]: + 20w, ¢, (b — 86.) + 2awd. (P — 50 ).
+2w(pr — 56.)° + 2wf' (U)o (¢r — 59.)

(4.5) = [w(¢r — S(bZ)z}t + (2w + sw,)(¢r — 5¢z)2 + 2aw, ¢ (¢t — 5¢)
+2uf'(U)¢=(¢r — 562) + [aweZls — [aswel]. + asw. o7
—[sw(¢r — $6.)° + 2awe.(, — 56.)].

= [awg? + w(dr — 56.)°]s + 2w + sw.) (¢ — 5¢.)
+5awz¢§ + Zf/(U)w¢Z(¢t —8¢.) + 20w, ¢.(¢r — 5¢-)
~[sw(er — 562)° + 20w, (¢ — 562) + aswd?l..

Hence, the combination (4.2) xu+ (4.4) with a positive constant p yields

{E1(0, (¢ — 502)) + Es(d2)}e + Ea(¢z, (¢ — 502)) + Ea(@) + {---}2

(4.6) = —2Fw{ud + (¢ — s¢.)},

where
(4.7)
B¢, (pr — 5¢2)) = w(pr — 5¢Z)2 + 2pwe(or — s¢2) + p(w + SWZ)‘an
E3(¢.) = awg?,
Ey (42, (¢ — 5¢2)) (2w + sw; — 2pw)(r — 562)°
L2(f (U)w + aw. ). (¢ — s¢=) + a(2pw + sw.)¢2,
Ey(¢) = pAg*.

Due to (a — s*)U, = Q(U) and w = w(U), we have

A = —{(a—sH'(U)U, + \w},
—{w"()QU) + Q' (V)w}.
= —{wQ}'U..

The monotonicity of the shock profile U implies U, < 0; thus we need to choose
w € C?[uy,u_] such that

(4.8)

(4.9) (wQ)" > v >0.

On the other hand, we need to choose a constant p > 0 and w such that the
discriminants of E; (i = 1,2) are negative; that is, the inequalities

(4.10) supD; <0, j=1,2
j
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hold uniformly in (u4, v ), where D; is the discrimant of the functions E;(j = 1,2),
respectively.

Dy = 4pw|(p — Dw — sw,],
Dy = 4{(f'w + aw.)? — a(2pw + sw.) (2w + sw, — 2pw)},

and 2pw + sw, > 0. For this choice of p and w, there exist positive constants ¢ and
C such that

(411) { D + (¢ — 562>

}
C{ng + (¢t - 5¢Z)2}

On the other hand, (4.8) and a > 0 gives

< B, < C{$*+ (¢ — s¢.)2,
< By

(4.12)

Thus the equality (4.6) together with the estimates (4.11)—(4.12) give the desired
estimate (4.1) after integration with respect to ¢ and z.

It remains to check conditions (4.8)—(4.10). First we choose the weight function
w(U) introduced in [7] for the scalar viscous conservation laws with nonconvex flux

(U = us)(U —u)
Q)

Then w € C?[uy,u_] and (4.8) holds, i.e., (wQ)” = v = 2. Furthermore, choosing
w= %, the two inequalities in (4.10) are equivalent to

(4.13) w(U) =

(4.14) 142522 >0,
w
2 2
(4.15) (f’+a%) <a(1+s%) :
w w
since

w, w Q 0(1)

w wa—s2 a-—s?’

which is small provided a is suitably large. This fact, together with f'? < a, gives us
(4.14) and (4.15); thus conditions (4.8) and (4.10) are satisfied. This completes the
proof of Lemma 4.1. O

Next we estimate the higher derivatives of ¢, multiplying the derivative of (3.4)
with respect to z by ¢. and (¢: — s¢.)., respectively; we have

28211((,25) : ¢z = *2Fz¢za
232]4(‘15) : (¢t - 5¢2)z = 72F2(¢t - 5¢2)z-
Letting ¢, = ®, then

82L(¢) = (¢zt - S¢zz)t - 5(¢zt - Sd)zz)z —A@zzz + Qo + AP + A

(4.16) L(62) + As — L(®) + A 0.
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By a similar argument to obtain (4.3) and (4.5) with w = 1, we have

[®2 + 20(D; — 5D,)]; + 2aD% — 2(D; — 5D,)% — N\, D% 4+ 21,0 + {-- -},

4.17
(4.17) = 2F. 0,

and
(D) — 5D.)% + ad?]; + 2(D; — sD,)* + 2f'(U) D, (®; — sD.)
(4.18) F2\,B(Dy — 5P,) 4+ {---}.
= —2F,(®; — 5D,).

The combination (4.17)x $+(4.18) yields

{E1(D, (D — 5D.)) + Eo(P2)}e + E3(P, (D1 — 52)) + G+ {- )2

(4.19)
=—F.{®+2(®, — sP.)},
where
G = )‘2—2(1)2 + 2)\2(1)(@)5 — Sq)z),
(4.20) Ei(®,(D; — 5D.)) = (P —sD.)?+ (P — sD.) + P2,
| Ey(®.) = ad?,
By(®., (2, —5B.)) = (D, — s0.) + 2/ (U)2.(B; — 50.) + ad?.

After integration with respect to t and z, (4.19) together with (4.20) gives the following
estimate:

(4.21)
II@(t)\I?+I\<I>t(t)I\2+/ (s, ®2)(7)|[Pdr
0

t t
<ol st s [ [ [ [ R0 (@00 )
0 0 JR

here @y = ¢} and P; = ¢}.
Using the estimate (4.1), we obtain
(4.22)

K ¢ A 1 1
/ /|G|dzd7- < / / [2<I>2 + 2|\ 202 + 5@3 + 252 |\ %02 + 2@3} dzdr
0 0

I ¢
3 | Iewesmiar o [ [
0 0

I )
FACESCIR

IN

IN

t
c 2 2 F ,b.))dzd }
n {||¢0||1+||¢1| + [ 17161+ 161,00 pazar

where we have used Lemma 4.1 and the boundness of |\, |.

Substituting (4.22) into (4.21) and replacing ® by 9,¢, we have the following
lemma.

LEMMA 4.2. There are positive constants C such that if

—Va < f'(u) <Va for u€ (up,u_),
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then

2 2 ]' K 2

10:6)1R +110:0d1 + 5 | 110:0,0.6.)7) P
0
t
< c{||¢o|%+ iz + [ [ 17:100:01+ 1(0:00, 0.0 )

t

(4.23) " / / |F|<|¢|+|<¢t,¢z>|>dzdv}

holds for t € [0,T].
Next we calculate the equality

020+ 07L(9) + 202(¢r — s¢2) - 02L(9) = —07F{02¢ + 202 (¢ — 59-)}

in the same way as for the proof of Lemma 4.2; it is easy to get the following equality
for ¥ = 92¢:
(4.24)

(U — s0,)2 + a¥? + (U, — s0,) + %\112 + (U — sU,)% 42 (U)W, (T, — sT,)
t

+aW? + 4\, U (U, — sVU,) + gxzqﬂ + U0, + 200, (W — sU,) +{-- -}
= —F,.[U+2(F; — s7,)].

Thus, noting ¥ = ¢, ., we have from (4.24) that
(4.25)

1 t t
126011 + 192617 + 3 / (0261, 826.)(1)|Pdr — C / (12612 + 162} dr
0 0

t
<0 { ol + sl + [ [ 171320+ 020 020 ) dedr |

where we have used the fact that A\,, ., are smooth bounded functions and the
Young inequality for the terms 4\, ¥ (¥, — s¥,) and 2X,,¢,(¥; — s¥,). Combining
successively the estimates (4.1), (4.23), and (4.25), we have

(4.26)

t t
16OIE + llow+ [ [ Noledzar+ [ lor,0.) Bar
sc{||¢o||§+|¢1|§+/0 /{|F|<|¢|+|<¢t,¢z>|>+|Fz|<|az¢|+\<az¢t,az¢z>|>

HFLI(020] +1(0201,02.)]) )z |
Since F = f(U + ¢.) — f'(U)¢. — f(U), we have
F = 0()(2), |F.| = O(1)(¢2 + 62.),
Forl = O + 62, + [6:6222))

By virtue of (3.6), the integral on the right-hand side of (4.26) is majored by

t
CN (1) / 1(6e, 62| 2dr;
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then we have

N

Therefore, by assuming N (T) <

t t t
{0+ [ enolar+ [ [ lordzir < NOP+ NG [l IBar

%, we obtain the desired estimate

t
N2(t)+/ |(¢1, b2)|[2dT < CN(0)* for t€[0,T).
0

Thus the proof of Proposition 3.3 is completed. O

Remark. When s = f'(uy) or s = f'(u—), we need a weight of the order (z) =

V1+ 22 as x — 400 or —oo for a stability theorem. The stability analysis for ¢ in
this case can be investigated similarly using the weighted function space

Xw(07T> = {d)(z7t) : ¢ € CO([07T),H3 n L’LQD(U)) n 01(07T;H2 N L721)(U))7
(¢z7¢t> € L2(07T;H20L?U(U))}’

where w(U(z)) ~ (z) as z — Fo0 by virtue of Lemma 2.1 and the definition of w(U)
in (4.13).
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A CONDENSATION-EVAPORATION PROBLEM
IN KINETIC THEORY™

L. ARKERYD' AND A. NOURI#

Abstract. A linear Boltzmann model is used for studying a condensation—evaporation prob-
lem in a bounded domain. First the time asymptotic limit is derived, which solves the associated
stationary problem. Then the Milne problem is discussed for the boundary layer. Finally a fluid
approximation is obtained in the small mean free path limit with initial and boundary layers of
zeroth order.

Key words. boundary layer, condensation, evaporation, hydrodynamic limit, initial layer, Milne
problem, time asymptotics
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Introduction. The kinetic description of a rarefied gas can be given through
the Boltzmann equation for the density function f(t,z,v) of particles with velocity
v at position x and time ¢t. A coarser theory consists of describing the gas as a
continuous fluid with local density p(t, ), velocity u(t,x), and temperature T'(¢, x)
satisfying the Euler or Navier—Stokes equations. In the limit of small mean free path,
the fluid dynamic equations may be derived from the Boltzmann equation through
either a Hilbert or Chapman—Enskog expansion; see, e.g., [2, 8, 9, 12]. However, the
fluid dynamic limits fail near shocks and for general indata near spatial or temporal
boundaries.

Among the many studies of the boundary layer structure let us mention the
following. In [3], the steady nonlinear Boltzmann equation for a gas with zero bulk
velocity between two plates at two different temperatures is solved for a small mean
free path, using a Chapman—Enskog expansion between the two plates. Here the fluid
part of the solution contains Fourier’s law for heat conduction which can be made to
satisfy different temperature values at the two plates. This is why the boundary layer
terms only need to be of first order with respect to the mean free path. An analogous
study also including the initial layer is performed in [16] for the linear semiconductor
case where further references in the field may also be found. For more results in the
area see also [5, 10, 13, 19].

The present paper addresses the added presence of condensation—evaporation on
the boundary. In this context a formal analysis and numerical computations are
carried out in [17, 18] for a rarefied gas with varying temperatures and condensation—
evaporation on the boundaries. On the basis of the linearized Boltzmann equation
for hard sphere molecules, zeroth-order boundary layer terms are needed for solving
the problem. Our paper considers the same problem for a rarefied solute in a solvent
gas, and with varying temperatures on the boundary. The linear Boltzmann equation
is used as a model for the solute. We prove that a fluid approximation in the interior
together with initial and boundary layer structures are available to describe the solute
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gas. Here the fluid approximation is derived from the boundary layer analysis. Indeed,
like [17, 18] this boundary layer structure requires zeroth-order terms with respect to
the mean free path.

In the first section an existence and uniqueness result for the initial boundary
value problem with given indata in a bounded region is recalled. We then determine
the solution to the stationary boundary value problem from the time asymptotics of
the initial boundary value solution. The approach is designed for prospective future
use in the nonlinear case. For another approach to the nonlinear stationary problem
see [1]. Section 2 is devoted to the solution of the Milne problem. For indepth
discussions and bibliography see [4, 6]. Depending on the sign of the normal velocity
of the solvent gas, two kinds of solutions are of interest for the following boundary
layer analysis. In the last section we perform in the slab case a fluid approximation
with respect to the mean free path by splitting the solution into a zeroth-order initial
layer term together with a stationary boundary value contribution having a fluid part
with zeroth-order boundary layer terms and a first order remainder term.

1. The initial boundary value problem and its time asymptotic behav-
ior. The linear Boltzmann equation models the interaction between a solvent gas
and a solute gas. The solute gas is rarefied enough so that collisions with itself are
negligible in comparison with collisions with the solvent gas. Both gases are located
in a bounded convex domain £ C R3. The distribution function f(¢,x,v) of the solute
gas satisfies the linear Boltzmann equation

(1.1) Of +v-Vof =Q(f),

where
QU (L, v) = / B(0,w)(f'F — [F.)dv.db6de = Q* (f) — v,

Here
fI:f(t,CL‘,’U/), F;:F(uxavfk)a

f:f(t,I,U), F*:F(t,z,v*),
2

— |y — I — oy — —) -

w=lv—uv, v =w 1+/<;((v Vi) - €)e,
2

v’*:v*JrlfH((v—v*)ﬁ)e, eec 52

F is the solvent distribution function, assumed to be known, and & is the ratio between
the solute molecular mass m and the solvent molecular mass m.,.

Assuming that the collisions between the two gases are governed by a cut-off in-
verse power law interaction potential U(p) = cp~**1 k > 2 depending on the distance
p of two colliding particles, the weight function B is B(#,w) = w7b(#), 0 < § < 7,

w > 0 (cf. [7]), where v = ¥=2 and b is a nonnegative L'-function defined on [0, 7],

with fog b(#)dd > 0. We assume hard interactions, i.e., kK > 50or 0 < v < 1. A
principle of detailed balance only holds [14], when F is a Maxwellian,

Flo) = (%ZT)_ exp <_m*(“gTU)2> .

This is also assumed throughout the paper.
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The collision frequency v(v) is bounded from above and below by a positive
multiple of (1+|v|)?. The choice of the bulk velocity U = (u,0,0) € R? in connection
with the given boundary temperature follows from the boundary value problem for
the solvent gas. The present study of the solute holds for any U and boundary
temperature. The solute Maxwellian with the same bulk velocity U and temperature

Tis M(v) = (%)_% exp(—m%). It satisfies

(1.2) F.M =F,M'.

(1.1) is complemented with an initial condition

(1.3) f(0,2,v) = fi(z,v)

and given indata on the boundary

(1.4) flt,z,v) = fo(z,v), €0, v-n(x)>0.

Here n(x) denotes the inward normal at x. Let (92 x R3)* and (09 x R3)~ denote
the sets of (r,v) € 92 x R3 such that v-n(x) > 0 and v - n(z) < 0, respectively.

For 0 sufficiently smooth, say C!, the existence and uniqueness approach of [15]
can be used to prove the following theorem.

THEOREM 1.1. If (1+|v])7 fi and (1+|v])? fy belong to L' (QxR3) and L}),n(gj)((ﬂﬁx
R3)T), respectively, then there exists a unique solution f of (1.1)~(1.3-1.4) with
FO@ + )Y € LY(Q x R3) for t > 0. Moreover, f is nonnegative whenever f;
and fy are nonnegative.

Let us next discuss the collisions and the collision operator in velocity space. The
momentum and energy conservations imply

Mo + Myv, = mu’ + myul,
2 2 _ 712 112
mlvf?2 + mfo.[2 = mo/[2 + m o 2.
A transformation to the equal mass situation m = m, is given by

- (07 -
11:1)—5(1)—1)*)7 Dp =V — — (v — vy),

m:—™  Hence
Mmy+m

where oo =

~ ~ ~/ ~/
V+ Ve =0V + U,

182 + |92 = [0']* + |52

Denote by f, Qﬂf)a and Q(f)

By (1.2)

V'v

Q+(f):/B B f'dv  dOde.

Let (,) denote the scalar product in L?(R?).
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LEMMA 1.2. Every f € L2(R3) can uniquely be written

(1.5) f=cpVuM 4y,
with (VvM, wy) = 0. Moreover
(1.6) (QF iy, )| < (1 —0)|y|2a

for some constant o such that 0 < o < 1.

Proof. Q% satisfies Grad’s conditions [12], so QT is a compact operator in L1 :=
LI(R3, 1+ |[v|*), 1 < ¢ < o0, s € R. Moreover, QF is symmetric in L?. Hence its
eigenvector spaces span L? and are finite dimensional for nonzero eigenvalues. Then

~ ~ o~ F)i ~ F* ~ F* r r
@0l = [By5 7T i< [ie = i
v v v
S0 —~C~2 is positive in L* and Q| < 1. The Q% -eigenvalue 1 is simple. Indeed,
Q1 f = f implies (Qf, f) = 0, which can be written

2
F!o- F, -~
/B( 7f’\/f> dvdv, dfde = 0.
v v
o R
ﬁf/: 7.]07
v v

or ]’\;, = % by (1.2). It follows (see [14]) that f = ¢v/M, where ¢ is a constant. Now

Hence

—1 is not an eigenvalue of Q. Otherwise, Q1 f = — f for some f implies
2
F F, -
/B (\/ — [y = f) dvdv, dfde = 0,
v v
SO AJ;,, = —%. Varying v, and the angular coordinate for v fixed gives that f has a

constant sign. Hence f = 0. Since QT is compact and symmetric, [|Q | <1, —-1is
not an eigenvalue, and the eigenspace of 1 is ¢v/vM, it follows that every f € L? can
be uniquely written as

f=cpVuM 1y,  with (VvM, i) =0
and
(QFwy,0y)| < (L —0)|yllfss, 0<o<1l. O

Let us next describe the time asymptotics for the solution of the initial boundary
value problem (1.1)—(1.3-1.4).

THEOREM 1.3. Let f; and f, be functions belonging to L (Q x R3) and

M
L%, ., (052 x R¥)T). When t tends to infinity, the solution to the initial bound-
vn(a)

ary value problem (1.1)—(1.3-1.4) converges in L*(2 x R3) to the unique stationary
solution g of the linear stationary Boltzmann equation

with § € L?, complemented with the boundary condition

(1.8) g(z,v) = fo(z,v), (z,v)€ (00 x R*)T.
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Proof. Due to the linearity of (1.1), f can be split into the sum of the solution
o (1.1) with initial condition f; and zero boundary condition, and the solution to
(1.1) with a zero initial condition and f, boundary condition. Again by linearity it is
enough to consider nonnegative initial and boundary values. Let us first prove that
the first part tends to zero in L}, when ¢ tends to infinity. Let do(x) denote the
measure on the boundary 0f). The Green formula applied to (1.1), together with
(1.6), implies

LI
QxR3 v(v)

t o0l s o o Pasdated
+ /O /(mxw) ) f(s,2,v)|2dsda(z)dv
t f 2
+ 0/0 /QXRS | (s, z,v)|*dsdxdv < /QXRS o dedy
t pon@l ;o
" /0 /GQX]RS) WU(S,%UH deOz(x)dU

(1.9) / /Q Qu,w)(s,x dsda:—/QXR3 |fz(y(v))| dxdv.

It follows that [, ps —+ O] | f(t,2z,v)|?dzdv decreases with time. Moreover, there is a

sequence t; tending to infinity and a function f such that f(t; + t) tends weakly
oo s t N 1

to f°° in LZ%7 and ) [, s [0(t; + t,2,0)[* dtdzdv and [; f(aﬂle@)f ‘”JEUJ)C)”f(t +

t,z,v)|? dtda(x)dv tend to zero when j tends to infinity. The function f> is a weak

solution to the equation (1.1) with zero boundary condition and @y~ = 0. It follows

that f°° = ¢*M for some constant ¢>. The null boundary conditions imply that
> = 0. Hence f(t) weakly converges to zero in L2 Since

11Oz, = [ 5

f(t) tends to zero strongly in L] ,, when ¢ tends to infinity.

Let us prove that the solution to the initial boundary value problem (1.1)—(1.3-
1.4) with null initial condition and boundary condition f; tends to a stationary so-
lution g to (1.7-1.8). In view of possible future applications we prefer not to give a
proof based on the existence of stationary solutions being known but instead to de-
duce their existence from the long time behavior. By translation invariance in time,
the solution at time ¢t + s is the sum of the solution at time ¢ and the contribution at
time s carried forward with zero boundary values to t + s. So f(¢,x,v) is increasing
with time and converges pointwise in z, v to a measurable function f°°, when ¢ tends
to infinity. Let us prove that foo belongs to L2. For any set I' C  x R3, multiplying
(1.1) by f and using Green’s formula leads to

t x,v)dxdv,

L F S 2_|f 2 rav i f S 2 rav
[ s e+ R — FOR) v+ [ (e +9)Pdad

v(v)
t+s
+cr/ / |(T, z,v)|*drdedv
t QxR3
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o 7‘@'”(55)‘**7_1.(027_0[1. v
+/t /(aw)_ oy (a0 Pardae)a
(1.10) g/rﬁ|f(t)|2dxdv+sc7

where

ci= / v n(z) | fo(z,v) 2da(z)dv.
(82xR3)+ v(v)

Let I'ye C © x R? be the set of (y,v) such that |[v] < 1 and the characteristic starting
at (t,y,v), namely, {(t + 7,y + Tv,v); 7 > 0}, reaches (99 x R3)~ at a time smaller
than ¢t + s. Then from the exponential form of the equation

v - n(z)|

t+s
- v/ r T 2 -
/t /(BQXRS)— v(v) |f(7, 2, v)|"drda(z)dv

> el [ oo ) Fdads

for some c(s,¢€) € (0,1). Hence by (1.10)

/ ) (e s)Pdedo < (1 c(s.0)) [ (0 dado + s

Ise

It follows that

1 .
Sup/ — \f(t,x7v)|2da:dv
Tge

t>0 v U)

is finite. Then by (1.10)

3

3
sup/ / lw(t + s,2,v)|?dsdzdv
t>0Jo Jaxrs

is finite. Hence, by the previous two lines,

%
sup [ [ lente+ .00 M () dsnde
t>0 Jo Tse

is bounded. Since 2 is bounded and convex, it follows that (for e small)

zeQ R3

inf/ v(v)M (v)dv > c/ v(v)M (v)dv.
(:v,v)el“%E
This implies that

sup/Q/ e (t + s, 2)Pv(v) M (v)dsdzdy < oc.
>0.J3 Jaxes

And so

1
owp [ [ Jegtt .0 P} s
t>0J0 JOxR3
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is bounded. Finally

1
sup/ / |f(t + s,2,v)|*dsdzdv
0 JOxR3

t>0

and (since f is an increasing function of time)

sup/ |f(t, x,v)|*dzdv
t>0 JQOxR3

are bounded. Hence f‘x’ belongs to L2(Q x R?). Moreover, f* solves the stationary
problem (1.7-1.8), and f(t) tends to f°° in L?(2 x R?), when ¢ tends to infinity.
Finally the solution of the stationary problem is unique in the class of functions g
such that § € L2. Indeed, let us prove that if a function g such that § € L? satisfies

(1.11) v-Vig=Q(9),
(1.12) g(xz,v) =0, (z,v)€ (00 xR3)T,

then g = 0. We notice that

/Q*(g)sign(g)dv—/ﬂg\dv < /Q*(\gl)dv—/V\QIdv:Q

So, multiplying (1.11) by sign(g) and integrating implies that

/ v-nlg| =0.
(90X RS)~

Hence

(1.13) glz,v) =0, (z,v)€ N x R>.

g belongs to L? and can be expressed by (1.5) as

(1.14) §=cVMv + 1.

It satisfies

(1.15) ﬁ v- Vg = Qu.

Integrating (1.15) with respect to z and v using (1.6) implies by (1.13) that w is equal
to zero. Then g = 0 follows from (1.11-1.12). o

2. The Milne problem. Write the velocity as v = (£,v") with £ the velocity
component in the z-direction and v’ the orthogonal velocity component. We consider
the Milne problem

I

(2.1) 0f=Qf, x>0 wvelR>

v
(22) f(oav) = 95(1)), §>0.
THEOREM 2.1. Let € L2 (R4 x R?). There is a solution to (2.1-2.2) in the set

{f; oo € R, f— couVUM € L3R4 x R3)}, which satisfies [&f(x,v)dv = coou for
all z > 0. For u < 0, this holds with cs, =0, i.e., [£f(z,v)dv =20 for all x> 0.
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Proof. There is—by the approach of Theorem 1.3—a unique solution f” €
L2([0,a] x R?) of

£

14

%f*=Qf, z€l0,a], veR’

together with (2.2) and boundary conditions at = a suitable for our purpose. For
u > 0, we take

(2.3) F(a, &) = f*a,—€ +2u,v'), €<0,

whereas for u < 0,

(2.4) f”(a,v) _ VM)

= " J |
f§<0 |€|M (v)dv >0§f (a,v)dv, £<0

Remark. The boundary condition (2.3) can only be used for v > 0. A desired
nonnegativity (2.9) would not be obtained from the boundary condition (2.4) for
u > 0.

Clearly [ &f(x,v)dv is constant in both cases, moreover equal to zero for u < 0.
Denote by uc, this constant and bound it for v > 0 from above and below. First

(2.5) UCq :/ff“(O,v)dv < A Ep(v)dv.

>0

Let f(x,v) = ¢*(z)y/v(v)M (v) +0%(x,v) be the decomposition of f* from section 1.
By orthogonality

(26) 7(Qf~a’fa) = 7(Qu~)a’wa) Za(wa’ﬁ)a)'
Multiplying (2.1) by f* and integrating over R3 leads to
(27) 0, [ £ 17 P(a.v)do = 2@ %) < ~20]a° | < 0.

Hence for u > 0,
(2.9 [ 1@ = [£ 1P

5 7a |2 g ra|2
> [ 5 Frends [ S o

e<o 'V
1 -
:Qy/ L 7P a, v)dv > 0,
e>2u V

whereas for u < 0,

(2.9) [ 1@ = [ £ 1P
> (1 M) / £ |£?(a,v)dv > 0.
13

f&‘<0 |£|M >0 V
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Indeed, using (2.4)

[ o ( ) >2
/&0 () |F? (@, v)dv NG E>0§f (a,v)dv

f£>0 fM f Fa|2
SEx0> = |F2(a, v)do.
B f5<o EIM Jeso v(v) 17, v)dv
But % < 1 for u < 0 and so (2.9) follows. Finally by (2.8)
UCq > Ef%(0,v)dv
<0
- €] fa
§<o
> - ([ et KHFH >)
£<0 £<0
£ o f
2.10 — M (v)d —— d .
(2.10) > = ([ e [ G

In the case u = 0 the theorem can from here be derived using, e.g., [2] or [16]. So let
us only detail the case when u # 0. First @® is bounded in L?([0, a] x R?) uniformly

with respect to a. Indeed by (2.8), (2.9)
cr/ /\ﬁ)a|2(z,v)drﬂdv

/Wﬂ—/f—mmm
(2.11) =;(/mewwMM—/fM”mmw)

Since f*(xz,v) = c*(x)M (v) + w*(z, v),

so that
(2.12) /O/ F (2, 0) — can/M(0)0 () ’2da:dv < c/oa/wa|2(x,v)dxdv.

By (2.5), (2.11), and (2.12), there exist a sequence (a;) tending to infinity, a number
Coo, and a function f such that c,; tends to coo and f% —c,; VM converges weakly
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in L? to f — CooVVM. One can then check that f is a solution to the Milne problem
(2.1-2.2) with the desired properties. 0

For the boundary layer study in section 3, some decay of § := f — CooVVM is
needed.

PROPOSITION 2.2. Assume that

(2.13) sup [p(0)|(1+ [v])® < oo, s€Ry.
veERY

Then for s € Ry, [ Vl(i!) |g(z,v)|?dv < cx™*, = >0.

This result can essentially be found in [11]. For the convenience of the reader
we give their proof with the differences introduced by the nonzero bulk velocity of
the Maxwellian. The proof is based on the entropy method introduced by Bardos,
Santos, and Sentis [2], and uses the following decay properties of g, pointwise in v
and integral in x.

LEMMA 2.3. Under (2.13) for s € Ry,

(2.14) sup (14 [v])*|g(z, v)| < e,
>0,0ER3

(2.15) / / 2%§(z,v)|*dzdv < cy.
0o Jms

The constants c1, co depend on @ and s.
Proof of Proposition 2.2. Write

€l o e € o e
L5 seoras [ S g o

s Bgepas [ Bl eapra

[g]>r,|v|<p v |[v|>p
= a+b+ec
By (2.14), a(r) and c(p) satisfy
3
(2.16) a(r) < cr/ (14 |v) "> Vdv < er for s > = — l,
lgl<r 2 2
2.17 c(p) <c 1+ o)™ 7de < ¢p? fors>§—l.
( p 0
lvl>p 2 2
Evidently
- &gz, v) |
b(r, p) < 1 7/ ST Y
(rp) <er”p o)
Now

and so by (2.15)

/£|>TJv<p

[N
U
I\
SN—
V)

2dv <c (/: </R$ |1Z)g(z,v)|2dv>

y
< cx_s"’l/ / 2%|§(2,v)|*dvdz < cx™5Th
z JR3
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Since g € L*(R4 x R?), a sequence y; — oo can be chosen so that lim; . g(y;j,.) =0
in L?(R3). It follows that

¢ 2
/ 2 g(z,v)| dv < cx—sT!
lg1>r,Jv[<p IV
and so
b(r,p) < crtprzTstL
The choice r = 175, p = 23 in (2.16-2.17) gives the desired result. ad
Proof of (2.14). By [11, Prop. 4.3]
(2.13) sup 3, )l 2 < e
>

where ¢ depends on @ in the L? N L™ sense. Also
(2.19) QF(9)(x,v) = | k(v,v1)g(z, v1)dvr
R3

with
k(v,01)] < (1 + [o] + [or) V(L + [vi]) "2 B, v1)

and
& (v,v1)dvy < (1 + o))~
RS
Hence

3
2

(140D 21Q%g(x, v)| < ellg(w, )] r2as).

The exponential form of (2.1-2.2) gives

ol
2

3_2 .~ ~ 3_
(1+ o)~ 2 (g2, v)| < [@(0)|(1+ [v])2
(2.20) + ¢ sup (e, )2 eo)-
>

Xe>0

Here x¢>o is the characteristic function of the set {v € R3; £ > 0}. By (2.18) the
right-hand side is finite. Also

/ (1+ o)™ (1 + [or])~"k(v, v1)dvs < o0, s € Ry.
RB

Using this together with (2.20), a direct estimate in the exponential form of (2.1-2.2)
gives (2.14). 0

Proof of 2.15. By (2.11), which also holds for w,, there is a sequence y; — oo
such that

(2.21) /|wg(yj,v)|2du — 0.
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It follows from Theorem 2.1 that [y, £g(x,v)dv = 0, x € Ry, and so the orthogonal

decomposition §(z,v) = c¢>(x)\/v(v)M(v) + W4(x,v) gives
()] = | [ cuyfopae

2M %
(2.22) < (6V(v()v)dv/|1bg(a:,v)|2dv) .
In particular
(2.23) lim ¢>(y;) = 0.
j—oo

Now the proof is based on a study of the entropy flux

mmz/fmmwmu

Using the orthogonal decomposition of g and splitting the domain of integration we
get

lim H(y;) < lim Cc(y;)* + lim C [ ,(y;,v)*dv
j—00 RS

J—0o0 J—00
+ lim C £ G(y;,v)*dv.
7700 Jpjzp ¥(V)

By (2.21) and (2.23) the first two of these limits are zero. By (2.14) the third one is
bounded by

1€ -5 ¢
C/|v|>p Sy P < S,

It follows that lim; . H(y;) = 0. A multiplication of (2.1) by § and v-integration
show that H(x) is nonincreasing. And so

(2:24) 0<H@) <HO < |
£>0

NI Pt

@(v)?dv.

Since g € L?(Ry x R3), it is enough for (2.15) to consider

/ / 2% (x, v)*dzdv.
1 JR3

A multiplication of (2.1) by 2°g and integration gives

Hy)y® + /1y <x5 /R3 Wy (z,v)?dv — sx51H(x)> dx
(2.25) < H(1) g/}E 2 @(v)%dv.

The positivity of H(y) implies that

/ly <33S /]RS Wy (z,v)?dv — sx51H(x)) dz < H(1).
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Now

I I
/ Bl 302w < o', ) Boges),
lo|]<p YV

and by (2.14), for any A € Ry,

v

/ ] Gz, v)%dv < exp™ .
lv|=p

This together with (2.22) and (2.25) implies for some a > 0 that

Y s ~ 2 Cpli’y v —Ao5—1
x g(z,v)*dv | | a— de <H(1)4c\ [ p sz’ “da.
1 x 1

The choice p(x) = (%)ﬁ,)\ > s(1 — ) yields

o
/ :Es/g(x7v)2dvdx < ¢s. O
1

3. The fluid approximation with initial and boundary layers for nonzero
bulk velocity. Introduce the mean free path ¢ > 0 and take w > 0. This section
considers the slab problem

(3.1) Ocfe + éf@xfe = 6%Q(fs), t>0, z€(0,1), velR?
together with the initial condition

(3.2) f(0,z,v) = fi(x,v), z€(0,1), veR3

and the boundary conditions

(3.3)  fe(t,0,v) = fo(v),t > 0,§ > 0; fet,L,v) = fi(v), t>0, £<O.

After an initial layer, the unique solution satisfies the stationary problem

1
(3.4) §0z9 = EQ(QE)) re€(0,1), ve RBv
together with the boundary conditions

(3.5) 9e(0,v) = fo(v), £€>0; gc(l,v) = fi(v), £<0,

if one disregards the error term from the initial layer. Moreover, g. can be split into
a fluid part cM in the interior of the domain together with boundary layers and with
the error term tending to zero strongly in L', when e tends to zero.

THEOREM 3.1. Let fi, fo, f1 be given with f; € L% ((0,1)xR?), fo € L% (RS xR?),

fie L3 (RE xR?). Denote by f. and g. the unique solutions of (3.1-3.3), respectively,

v

(3.4-3.5) with these given initial and boundary values. Then fort >0
lim f.(t,.) — ge(.) = 0

strongly in L*((0,1) x R3).
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THEOREM 3.2. Under the same hypotheses there are a constant c, boundary

layer terms lc(x,v) = ZO(%, v), and r(z,v) = ro(%_l, v), with 1° and 7, respectively,

belonging to L*>(R; x R?) and L*>(R_ x R?) such that
(3.6) ge =M + 1+ 7+ S..

Here the terms I° and 7 have the decay properties of Proposition 2.2, and the remain-
der term S. tends to 0 in L*((0,1) x R3), when € tends to 0.

The proof of Theorem 3.1 is based on the following lemma.

LEMMA 3.3. Let f; be given with 0 < f; € L2 ((0,1) x R®). Denote by f.(t,z,v)

the solution of (3.1-3.3) with f; as initial value and boundary values fo = f1 = 0. For
5> 0, fo(s,.,.) converges strongly in L*((0,1) x R3) to zero, when € tends to zero.
Proof. After scaling t — E%, the solution (still denoted f.) satisfies

O +E0)fc =7 QU 1Ry, E(1), veER,
fe(07~):fi(~)7
fe(t,0,0) =0, t>0, £€>0, f(t,L,v)=0, t>0, £<O0.

Green’s formula implies that mass and entropy

1 1 i 2
€ t? )
/ fe(t,z,v)dzdv, / Mdmdv
o Jre 0

R3 v(v)

are decreasing with time. Suppose that the lemma does not hold. Then for some
s > 0, there is a sequence (¢;) with lim;_, ., €; = 0 such that

1
inf/ / fe; (tj, x,v)dxdv > 0.
J 0 R3

;. The lemma follows if for a subsequence of (t;) (still denoted (t;)) there
e (t;) with 0 < t;- < t; such that

|

Here t; =

)

€

<

is a sequen

Q

1
lim / fe, (th, z,v)dzdv = 0.
0o Jrs '

Jj—o0

With f., := f;, 10, := 1w, (1.9) gives

1 e 2 t;j ol
// Mdﬂ@dv—i—g/ //wj(r,x,v)Qdexdv
0o Jr3 v(v) € Jo Jo JRr3
1

; )
< / M dzdv := oc;.
o Jre  v(v)
_3 _1 _1
If each of the se; * intervals [le; *, (I + 1)e; *] of [0,;] has

_1
2

1 (H—l)sj 1 s ¢
— / / wj(T,x,v)szdacdv > €7 —1,
0 R3 S

€j -
J lej

[N
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t; ol
o ’ -

—/ //wj(T,x,v)Qdea:dv>clo.

€& Jo Jo Jm3

This contradiction implies that for some interval I; C [0,¢;] and of length ¢; >

1 ! 3
—/ / / W; (T, z,v)2drdrdv < e a
€ Ji; Jo Jr3 S
lim € / / / W, (T, 2,v) deach = 0.
j—00 I R3

With I; = (},¢7) it follows that for ¢ > 0 (and some subsequence of the j’s)

f:](t; + tax7v) - foo(t,x,’(/)
weakly in L? ((0,1) x R3). Here

1 3 2
/ M dzdv < ocq.
0 JR3 v(v)

By the equicontinuity in ¢, it is enough to prove the above weak L2-convergence for
rational t’s. Using (1.9) we have for ¢ fixed and j large enough that

/ / t +txv) dxdv < ocy.
]Rdl/

So a subsequence of fj (t +1t) converges weakly when j — 0. We conclude with a
Cantor diagonalization argument.
Also for a.e. t > 0,

then

-

In particular

w;(t 4+ t,x,v) — 0
strongly in L?((0,1) x R3), and so
foot,2,0) = coo(t,z,)/v () M(v).
But f. satisfies
(O +€0:)foo =0, t>0, ze€(0,1), veR
foo(t,0,0) =0, t>0, £€>0; folt,1,0)=0, t>0, £<0,

and 50 fo = 0. In particular lim; .., fj(t;,.,.) = 0 weakly in L3 ((0,1) x R3). Tt

j ]
follows that

1
0 < lim fi(t, z,v)dzdo
3

Jj—o00 R

1 i
< lim fi( t ,x,v)dzdv = lim / / fj t , &, v)dxdvy
J—00 0 Rg ]*)00 ]R‘5

=0.
This completes the proof of the lemma. ]
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Proof of Theorem 3.1. The function f. — g. satisfies (3.1-3.3) with initial value
fi — g; and boundary value zero. By linearity it is enough to prove the theorem
when the boundary values are zero and f; — ¢g; > 0, and this case is contained in
Lemma 3.3. a

Proof of Theorem 3.2. Essentially by section 1, there is a unique solution g.(z,v)
with g. € L? to

§0:0. = - Qlg0)
9¢(0,v) = fo(v), €£>0,
g9e(1,v) = fi(v), €<0.
From the results on the Milne problem in Theorem 2.1, there is a constant ¢ such that

£
v(v)

0.q(z,v) = Qd(w,v), x>0, veR?,

Q(O,U):fo(’l)), £§>0

has a solution § = ¢v/UvM + I, with [ € L?*(Rt x R3). Define I° by

M{(v)
v(v)

°(y,v) = 1(y,v).

Also by Theorem 2.1 the Milne problem

V(i)rz(x,v)Qf(z,v), r<0, veR3

7(0,v) = fi(v) — e\/v(v)M(v), €<0

has a solution 7 € L?(R_ x R3). Indeed for u > 0, looking for a solution defined in
R_ corresponds to considering v < 0 in the R situation. Define 7° by

Se :=ge — cM — I, — 7. satisfies
1
(3.7) €0,S. = - Q(S.), z€(0,1), wveR3
0 1
Sc(0,0) == —=,v ), &>0,
€

1
Sc(1,v) = —1° <,1}> , £<0.
€
Introduce as above the orthogonal decomposition

Se(z,v) = ¢ (2)VvM + ..
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It follows from (3.4), Green’s formula, and (1.6) that

/ @|5;(o,v)|2dv+/ S 18.(1, 0)2dv
e<o V oV

g

1
+ 7/ | (, v)|2dedv
o Jrs

€
€ 0 1 €l [0 (L
(3.8) §/§>0V T <—€,v> dv+/§<0V l (€,v>

By Proposition 2.2 the right-hand side tends superalgebraically to zero, when € tends
to zero. By (3.4)

2 2

dv.

UCe = /fSE(x,v)dv

is independent of z. Multiplying (3.7) with signS. and integrating we get

/|ﬂmwwm%/’a&@wm
£<0 £>0

S/ £r° <1,v> var/ ¢l° <1,v) dv.
£>0 € £<0 €
Thus
1
e < [1€lS.0.v)ae
2 2
(3.9) gf / 3 0 (—1,1)) dv—i—/ €l 1° (1,1;) dv |,
u §>OV € £<0 14 €

which tends to zero superalgebraically, when e tends to zero. As in (2.12)

/01 /]R3 Sf(x’v) _Ce\/W ‘Qdazdv

1
(3.10) gc/ / [ (x,v)[Pdzdv.
o Jrs

By (3.5-3.7)

1
/ |S.(z,v)|?dzdv
0 Jr3

tends to zero superalgebraically, when € tends to zero. 1]

Remark. The evaporation at = 0 determines the (fluid dynamic) mass flux
term cM through the boundary layer analysis. At the condensation boundary x = 1
this term is removed from the boundary layer correction.

Remark. Tt follows from this proof that the solution of the Milne problem in
Theorem 2.1 is unique. It also follows that the convergence to zero of the error term
in Theorem 3.2 is superalgebraic.
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A VARIATIONAL PROBLEM RELATED

TO THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY
WITH NORMAL IMPURITY INCLUSION*

SHIJIN DING', ZUHAN LIU¥, AND WANGHUI YU'

Abstract. A variational problem related to the Ginzburg—Landau model of superconductivity
with normal impurity inclusion is considered. A standing feature of this problem is the vortex-pinning
effect (i.e., the zeros of solutions are attracted to the region occupied by the normal impurities) as
some parameters are sufficiently small. Asymptotic behaviors of the solutions of this problem as
these parameters tend to zero is studied, and the vortex-pinning effect is proved.

Key words. Ginzburg-Landau model, superconductivity, normal impurities, asymptotic be-
havior, vortex-pinning effect

AMS subject classifications. 35J55, 35Q40

PII. S0036141096303086

1. Introduction. Let Q, and Q(9, CC Q) be two bounded domains in R?,
g : 0Q — S be a smooth map with deg(g,9Q) > 0. Set Q, = Q\Q,,. Consider the
following variational problem: find a function u € H}(€) such that

Nl = 1
(1.1) E(u,Q) Uergilr(lQ)E(v,Q),
where
(12 B0 =g [Vl + o [ @-pP? o [ P
’ ’ B 2 Q 452 Q. 2”2 Qn ’
(1.3) H;(Q)£{U:Q—>C|U€H1(Q), v =g on IN},

and e, p are small positive constants.

This problem is related to the Ginzburg-Landau model of superconductivity with
normal impurity inclusion such as superconducting-normal junctions (cf. [1]).
and €2, represent the domains occupied by superconducting materials and normal
conducting materials, respectively. The solution u is the Ginzburg-Landau complex
order parameter. Zeros of u are known as Ginzburg-Landau vortices which are of
significance in the theory of superconductivity. When the vortices move, resistance
to the current is produced and causes loss of superconductivity. One way to prevent
the movement of the vortices is to add some impurities such as normal conducting
materials into the superconducting materials to provide pinning sites for the vortices.
In this setting, a simplified Ginzburg-Landau’s Gibbs free energy is given by (1.2)
(cf. [1], [2]).

This paper is devoted to the study of asymptotic behaviors of the solution u as
e, p, and diam €, tend to zero as well as the vortex-pinning effect of (1.1)—(1.3). For
simplicity, we shall let € =y, Q = By, Q, = B,, and Q; = B;\B,. Here 0 < p < %

*Received by the editors May 6, 1996; accepted for publication (in revised form) November 19,
1996.
http://www.siam.org/journals/sima/29-1/30308.html
TDepartment of Mathematics, Suzhou University, Suzhou 215006, China.
fDepartment of Mathematics, Yangzhou Normal College, Yangzhou 225002, China.

48



A VARIATIONAL PROBLEM 49

and B, is the disc in R? centered at the origin with radius 7. Then our problem
becomes

(1.4) E(u,By) = Ue?;i(nBl)E(v,Bl)7

where

5 BeB)=g [ VePr g [ -l [P
2 /g, 4e? Bi\B, 2¢? B,

and

(1.6) Hgl(Bl)E{UZB1—>C|’UEH1(Bl), v=gon dB}.

Our main result is the following theorem.

THEOREM. Suppose that g € C%(0By,S') and deg(g,0B1) = d > 0. Given
any sequence {en, pn ii‘i satisfying €, — 0 and p, — 0 as n — +oo, let u, be a
solution of (1.4)~(1.6) with e = &, and p = p,. Then, by passing to an appropriate
subsequence, we have

Up — Ux n Clloc (Bl\ U{az}> as n — +00,

i=0
where ag, a1, ...,an are m + 1 distinct points in By, ag = 0, 0 < m < d and u,
is a harmonic map in Bi\(UjLo{a;}) such that deg(u.,a;) = 1(j = 1,2,...,m),

deg(uy,0) =d —m, and u, = g on 0B.
Moreover, there is a constant p > 1 depending only on g such that

1° deg(u.,0) < kif lim —"—>p (k=2,...,d),

n—-+oo Pn

— € 1
920 deg(us,0) > kif Tm —" <~ (k=0,1,...,d—1).
eg(ux,0) >k i nlrfmp%k'*‘l 7/1( 0 )

In particular, we have the following vortex-pinning effect:

3° deg(us,0) > 1if lim % =0,

n—-+oo pn o

R I En _ En
4°  deg(u«,0) =k if nEI-sI-loo F =0 and nEToo p%kﬂ = 400
(k=1,2,....,d—1),
. . En
5° deg(u*, 0) =dif lim Sd—1 =0.

n—-+4oo pn -

One can easily see from the arguments in the following sections that, if njmoo Pn =
po > 0, the theorem also holds with ag replaced by B,, and deg(u., 0) by deg(u., B,,).
Hence 5° implies deg(u«, B,,) = d and m = 0. Note that our arguments can be applied

for more general domains 2 and €2,,.
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We shall show some energy estimates in section 2 and prove the first part of the
theorem above (i.e., the convergence of the solution u,, to u, in C}_(B1\ UiLo {as})
as n — +00) in section 3. In the last section, i.e., section 4, we shall study the degrees
of the singular points {ag, ay,...,a,} and complete the proof of the theorem.

Throughout this paper, * = (21, z2) = 21 + iz denotes both a complex number
and a point in R?, (r,6) is the polar coordinate of R?, and the capital letter “C”
denotes various constants which depend only on g. Moreover, for any domain  C R?,
we shall let

_1 2 1 212 1 2
(1L7) E(,Q) = f/ Vo2 + (1= oP)? + — o2,
2 /.o 4e? (B1\B,)NQ 2¢? B,NQ

2. Some energy estimates. By the standard theory of variational problems,

(1.4)-(1.6) has at least one solution u. , € C1(By) N C%(B;\B,) N C?(B,) satisfying

1 :
(2.1) —Au = 5—2u(1 —|u*) in Bi\B,,
1 .
(2.2) —Au = — U in B,,
(2.3) u and Vu are continuous across 0B,
and
(2.4) u=g on 0B;.

It follows from (2.1)—(2.4) that

(2.5) 0<|u/<1 in By
and

C
(2.6) Vul <~ inBy.

In fact, (2.5) can be proved by the maximum principle, and the proof of (2.6) can be
found in [3] (see the Appendix in [3]).

In this section we shall show some energy estimates for the solution u which will
be used in the next section.

LEMMA 2.1.

1 1
(2.7); B(u, By) < mjlog - +(d — j)? log _+C [1+ﬂ
forj=0,1,...,d.
Proof. We can assume ¢ < 1 by (2.5) and (2.6). For any integer j(0 < j < d),
choose j disjoint discs in Bi1\By : {Bg, (k) }._o- Here Ry is a small constant and
Bpg, (1) = ¢. Define a comparison function v(x) in By by the following:

1° v is the harmonic map in (Bl\B%)\(UiZO Bpg,(z1)) satisfy

i(d_j)e, and

vloB, =9, U|aBl =€
2

T — Tk .
v|aBR0(xk):m, k:0’17"'7]7
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20 = . in BRO(mk)\BeRo(xk)v k=0,1,...,7,

3° o is a minimizer of the functional E(v, Beg,(zx)) in H(Beg, (7)) with the
boundary condition
r — Tk

v = on 0Bcg,(xk), k=0,1,...,7,
|z — @

where E(v, Beg,(xr)) is defined in (1.7).

4° p = eild=9)0 iy Bi\Bpie,

5° v = %ei(d*j)e in B,ye\By,
6° v=0in B,.

Obviously, v € H}(B1). So E(u, By) < E(v, By).
It is easy to verify that

1
(2.8) E(v,D) < mjlog - +C,

where D = (B1\By)\(Ul_Ber, (1)),

(2.9) E(v, B1\B,sz) < 7r(d—j)210gp+€ +C
and
(2.10) E(v, Bpie) Sﬂ(d—j)QlongJjg+C [54—1] )

Set  — x, = ey and U(y) = v(z) + ey). Then

B(o, Ber o0)) = [

1. -
5IVOR 4 (1= P2 a.

Hence, we have from the minimality of v (see the definition 3°) that

(2.11) E(v,Bep, (7)) <C, k=0,1,...,].
Thus (2.7) follows from (2.8)—(2.11). 0
LEMMA 2.2.
c € € 1
2.12 BEw,B,)< — [1+5+ %10 ] 0<y<1).
(212) (B < 7o 145+ Stogs] 0<q <)

Proof. 1t is easy to see from (2.7)¢ that there is a constant 7 € (y,1) such that

@m)/%|vv‘mﬁ+l|<“awtw<c1+p+11
° o U 7p7 252 u f}/pﬂ — p2(1 _72) e Og p °



52 SHIJIN DING, ZUHAN LIU, AND WANGHUI YU

Multiplying (2.2) by u* (the complex conjugate function of u) and then integrating

over Bz, we find that
1 0
/ [|Vu2 + 2|U|2] =/ S
B € dB5, on

VP>
Fp

Hence (2.12) follows. 0
LEMMA 2.3.

1 1 1
E(u, Bi\B,,) < mjlog — +7(d — §)?log = + c, <1 + log ) ,

€ p P
(2.14);

1
<j:0713"'7d7 ’y>]—v ’7p<4)7

where C, = C(ﬁ +logy+1).
Proof. In the case 2 > p, (2.14) follows directly from (2.7). So we only need to
prove (2.14) for 2 < p < 1. Let
1 2m 1/2
(2.15) a(r) = {/ [u(r, 9)2d9} for r € [0, 1].
2m Jo

One can easily verify that

2m
(2.16) la(r))? = i/ lu(r, 0)[2d0 for r € [0, 1],
2T 0

1 2m
(2.17) (1—la(r)*)? < 7/ (1= Ju(r,0)]*)%do, € 0,1],

T Jo
and

ou(r)|> 1 /27T Au(r,0) |”
. < — — .. .

(2.18) ar | S ), 5 df for a.e. r € [0,1]

Since (2.7)p implies that there exists a constant ¥ € (1,~) such that

27 1 . 1 .
[ [5vu6n o8+ L0 - Geopy]
0 3

c 1 p
. < — — 4 5
(2.19) S CEEy [log p + - + 1} ,
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we have from (2.17) and (2.19) that

E+€f+—log;1
V=1lp p* p* "p

(2.20) (1= la(@p)*)* <
Now define a function ¥ in B; by the following:
1° v=we E\B%,

where v is defined in the proof of Lemma 2.1.
2° ¢ =eild=9)0 ip B1\B,
3° §=Leld%in B,.

It is obvious that

1
(2.21) E(%, B1\Bjy,) < ﬂ(d—j)zlog; + C'log,
L C . O
(2.22) V| < > |V25| < 2 o Bi\Bi,,
and
. O
(2.23) 9] < 1,|Vo| < < in B;.

Moreover, (2.8) and (2.11) give

1
(2.24) E(v,B1\By) < mjlog — + C.
3
Set
v in Bi\B5p+e,
. w(x) = - (r—9p) +u(@p)| v in Q/p+s\ Aps

uv in B5,.
Then w(z) € H}(B1), and, consequently,
E(U,, Bl) S E(’LU, Bl)

(226) = E(0, B1\Bspye) + E(w, Bspsc\Bsp) + E(w, Bs).

E(U},BQPJFE\B:W) < C/
Byp+e\Byp

By (2.20) and (2.22), we get after simple calculations that

C 1

173+ S0 a)] .
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1
E(w, Bs,) = / 5\@% +avo]? + — (1—|al*)?

2
Bs, de B5,\B,

1 / ~_12
|UU|
2
2¢e B,

1
< B3, Bs,) + 5 / al?| Va2
2 /B

1
+ 5/ [0aVa - VU™ 4+ 0" aVa - VI
Bs,

= E(, Bs,) + I.

Integrating by parts and using (2.22) and (2.23), we have
need [ il [ Nl
B’w\B%p 8B¢WLJ83%F

+/ |a\2|vm2+/ Va?
B B+

v Y
P 5P

1
<c 1+/ |V17|2+/ [|w|2+2|u|2}
B’AYP\B%‘O B%p €

1
<CK1 +/ {|Vﬂ|2 + 2|fa|2}
B 3

1

2/7
By (2.15), (2.18), and Lemma 2.2, we get |I| < C, therefore,
(2.28) E(w, B:/p) < E(a, BWP) + C.

Combining (2.26)—(2.28), (2.21), (2.24), and (2.16)—(2.18), we yield

1 1
E(u,By) < mjlog - +7(d —j)2log;

1 1
+C (72 — + logy + 1) (1 + log p) + E(u, B5,).

Hence, (2.14) follows. 0
LEMMA 2.4.
1 C 1
2.29 — 1—|ul?) < 1 1],
( ) 52 /BI\B'ypa( ‘U| )_ 1_a(0gfy+72_1+ )

where’y>1,'yp<%,0<a<1.
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Proof. Multiplying (2.1) by - Vu* and then integrating over B1\B,(p < r < 1),
after some elementary calculations we get

1/ +r/
2 Jam, 2 Jag,

— 1 — |ul?)? L/ 1 — |ul?2)2
tam o, Ol )

1 2y 1
=3 wo [ (g g ey
2/831 2 JaB, 4e? Jop,

(2.30) (p<r<l),

2 2

Ju
ov

Ju
or

2

@
or

@
ov

where v is the unit normal vector and 7 is the unit tangential vector (for details, see
[2, Theorem III 2, p. 45]).
By Lemma 2.3 and the inequality

1" ) 1 )
f/ - <7‘/ [Vul >dr = 7/ |Vul® < E(u, B1\B,,),
2 vp T 9B, 2 B, ,a\B,,

we can find a 7 € (yp,vp®) such that

- E(u, B1\B-,) c 1
2.31 ’y/ Vul? < 105 < +logy+1].
B30T, VS A egsl = T-a (771

Thus (2.29) follows from (2.30) and (2.31). a
Given any constant 7 € (0, %), consider the following variational problem: find a
function ¢ € H}(B,\Bs), subject to (s.t.)

(2.32) E(¢, By\Bg) = E(v, By\B),

min
vEHL(By\Be)
where £ = 2max{p, e}, £ <n/2, u is a solution of (1.4)-(1.6), E(v, B,\Be) is defined
in (1.7), ie.,

1 1
2. E(v, B,\B¢) = Vo2 4+ — (1 - v]?)?
(233) B = [ S -]

and
(2.34) H}(B,\B¢) = {v: B,\Be — Clv € H'(B,\B¢),v = u on dB,}.

By the standard theory, (2.32) has at least one solution ¢ € C?(B,\ B) satisfying

(235) 86 =0~ [9P) in B,\Be,
(236) ¢ =u on aan
(2.37) % _ 0 on 0B¢.

ov
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LEMMA 2.5. Let ¢ be a solution of (2.32); then

1 1
(2.38) E(¢, By\B¢) < Clogg < Clog o
(2.39) | <1 in B,\Bs,
(2.40) Vo] < g in B,\Be,
and
(2.41) i/ (1—¢]*)?* < ¢ 0D<a<l1, £€<n).
82 Bea\ B T 1l1—« ’
Moreover, if
1 1 C 1
2.42 7/ Vul> + — 1—ul?)? < =log =,
(2.42) 3 g, IVOP 3 [, (L) < o
then
1 C
2.43 7/ 1— )< ———
(2.43) e? Baa(zo)ﬂ(BT,\Bg)( 14 a(l—a)

forO<a<1, z€B,\Be, and &%%<n.
Proof. Since & = 2max{e, p}, (2.38) follows from Lemmas 2.1 and 2.3 and the
minimality of ¢. (2.39) follows from (2.35)—(2.37), (2.5), and the maximum principle.
Set a(y) = ¢(ey). Then  solves

- £ n
—AG=o(1—16P) for = <yl <,
96 ¢
_— = 0 = -,
ey on [y =2
9 <1 for & <y < .
€ €
Noting that g > 2 and g - g > g > 2, we can apply the local estimates of elliptic
equations to ¢ in the set {g < |yl < g + 1} and obtain
" £ £
(2.44) Vo] < C for =<yl <>+1.
€ €

~

Similarly, set g(y) = ¢(y) — u(ey). Then ¢ satisfies

~AG=—u( =) + o0 -l = 1, <l <L,
=0 for [y = 2,
9
ol <2,1f| <2 for§g\y|gﬁ.
5 9

By applying local estimates of elliptic equations to 5 in?-1<]yl < g, we get

€

vél<C  for 1<yl <

o3

)
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which, together with (2.6), gives
n n n
(2.45) Vo] <C for — —1< |yl < —.
€ €
Now by (2.44), (2.45), and the interior estimates of elliptic equations, we yield

¢
<yl <

(2.46) V| < C for > < 7.
e €

Recalling (g(y) = ¢(ey), we get (2.40).

(2.41) can be proved in terms of (2.37), (2.38), and an argument similar to that
in the proof of Lemma 2.4.

If (2.42) holds, then, for any x¢ € B\ B,

(x —x¢) - v>0 on 0B,

/ | | 1 ‘Bu
r—Xo|" |z |75
9B, NB.o (z0) 2|0r

(a3

and

S|
- o 2\2
+ =0 |u|)]d5‘

Ce
<

log} < C’sglog1 < g
I3 e «
Thus an argument similar to that in the proof of Lemma 2.4 gives (2.43) when
B.o(z9) N OB, # 0 (see [4]). Notice that (2.43) follows directly from (2.41) when
B.o(x9) N 0B¢ # ). Hence (2.43) is proved. 0

LEMMA 2.6. Assume (2.42),

1
(2.47) lul > 3 in Boy\By,
and
(2.48) |deg(u,0B,| < C.
Then there are finite integers 6o, 01,...,0n and a positive constant €9 = £o(n) such
that
(2.49) > 8 = deg(u, 0By),

k=0
(2.50) 0<NLZC, || <C (k=0,1,...,N),
and
BluBa\B) = [ [LIVuP + -
BQT}\BE 2 45

al 1

(2.51) > 768 log T Z(Si log— - C for e < ey,
3 k=1 <

where u is a solution of (1.4)—(1.6), £ = 2max{e, p}, and £ < n/2.
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Proof. In terms of Lemma 2.5 and the arguments in [2, Chapter IV] and in
[4], there are a positive constant A(A < C) and a finite collection of disjoint discs

{Bac(z) HY_, satisfying

(252) CL'kEBn\Bg, k=1,2,...,.N, N<C,
(2.53) lz; —x;] > 8\, 1<i<j<N,
1
(2.54) |p(zr)| < > k=1,2...,N,
N
1 .
(2.55) B(@)| =5 i (B\B) \ ( U Bkm)) ,
k=1
and
(2.56) lki| < C, ki =deg(p,dByr:(xr)), k=1,...,N.
Because of N < C and ¢ < %, we can assume without loss of generality that
(2.57) |lzx| > 8 k=1,2,...,N.
By (2.48) and (2.55)—(2.57), ko = deg(¢, 0B¢) is well defined and
N
(2.58) > ki =deg(u,0B,), kx| <C, k=0,1,...,N.
k=0

Extend ¢ to By by ¢ = u in B1\B,, and let

(2:59) %Ei('z:z:')“’“.

k=0

Combining the arguments in [2, Appendix IV, Theorem A.6] and [5], we can
deduce from Lemma 2.5, (2.47), (2.48), and (2.52)—(2.57) that

(2.60) /Q Vo > /Q Vol - C,

where Q = Bg,,\(Ug:1 Be(zr) U Be). For the convenience of our readers, we shall
prove (2.60) in the Appendix of this paper.

Without loss of generality, suppose deg(u,0B,) > 0 (otherwise, one can replace
u(r,0) by u(r,—0)). By repeating the proof of Theorem IL.1 in [2], we have from
Corollary IL.1 in [2] that

N
1 2 : 2 / 2 1
. — V > -+ E [ —
(2 61) 2 /Q | ¢0| (50751?.1,%1\1)61:’ {60 log é ( 6k log € C’

k=1

where

pP= {(60,61,...,5N) |6 is an integer, k=0,1,..., N,

N
0< 8 < 5 (Jokl +5n), k=0,1,...,N,) & :deg(u,aBn)}.
k=0

N | =
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Now (2.51) follows from (2.60), (2.61), and the inequality E(u,B2,\B¢) >
E(d)aBQn\BE)' o

3. Convergence of the solutions. Owing to (2.5), (2.6), Lemma 2.4, and the
argument in [2, Chapter IV], there is a finite collection of disjoint discs { Bas(xr) }1to;
Bye(zo) = 0; 1, € Bl\B%%, k =1,2,...,m, where £ = 2max{e, p}; and A is a

positive constant depending only on g such that

1
(3.1) |u(xk)|<§, k=1,2,...,m,
1 "
(3.2) |u(x)| > 5 in (Bl\B?)E%)\<kL_JO B)\s(xk)> )
(3.3) 0<m<C, |deg(u,dBxe(ap))| <C, k=1,...,m.

For any sequence {En,pn}:;g7 en — 0, pp — 0 as n — 400, by passing to an
appropriate subsequence, we can assume that the limit set of {xk}ﬁzo(atk = zx(n),
m = m(n)) in B1\{0} as n — +oo is given by {a1,az,...,a,}0 <m < C (by m =0
denote the limit set is empty).

Let ap=0and 0 <7 < io<néi_11< la; — a;|. Then it follows from (3.2) that
<i<j<m

(3.4) |tn | > % in Bl\(U Bn(ak)>
k=0

for n large enough, where u, is a solution of (1.4)—(1.6) with ¢ = ¢, and p = p,.
Thus di, = deg(up, 0By (ax))(k =0,1,...,m) are well defined and, by (3.3),

m

(3.5) di| <C, k=0,1,...,m,» dy=d,
k=0

where d = deg(g,0B;1) > 0. Therefore, by passing to a further subsequence, we can
assume di, (k=0,1,...,m) are independent of n.

LEMMA 3.1.
(36) Bl Brp) < O +1og9) (22 41) (1> 1, 29, < ).

Proof. By Lemmas 2.1 and 2.3, we can find a constant 7 € [5 7, 7] such that

1 1 C 1

3.7 7/ Vu,|? + — 1 — |ug,|? < —log -,
(37) 3 IVl g [ (0 fual?) < o

where £ = 2max{e,, pn}- So it follows from Lemma 2.6 that

N
(3.8) E(uy, Bay\Byg) > 7683 logg +7 (Z 6,%) log Ei —C(logy+1)
k=1 n

for some integers &, 81, . . .,n with S p_o 6, = do and 0 < 6, < C(k=0,1,...,N).
By Lemma 2.4 and (3.4) we have

(3.9) E(un, Bay(ay)) > |dy|log Eﬁ —C, k=1,...,m,
n

(see [2, Theorem V.2, p. 53]).
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Now we yield from (3.8), (3.9), and Lemma 2.1 that
E(un, Bye)

1 1 n
< 7rjlog€+7r(dj)2logp+0(1+p)

En

- n al n

— di| | log — — 62 | log =~
(S e e (ot e 2

(3.10) —m 6} logg + C(1 +log~).

Suppose &, > p,. Then & = 2¢,,. Letting j = d in (3.10), we get

m N
1
E(un, Bye) < (d =S Jdal - Zéi) log
k=1 k=0
(3.11) +m <26§+Z|dk|> logg+0(1+logfy) <1+€”) .

k=0 k=1 n

Since
m N m
d— <Z|dk|+25,§> <d-Y dy=d—d=0,
k=1 k=0 k=0

1
we yield (3.6) for e, > p, by taking n =1y = 1 0<néin< la; — ajl.
<i<j<m

Suppose €, < pp. Then & = 2p,. If [6o] > d, let 5 = 0 in (3.10); if |69 < d, let
j=d—bo] in (3.10). In both cases, we can get (3.6) for €, > pn,. O
LEMMA 3.2.

1 1
E(un, B1\Bs,,) < mjlog — +7(d - j)? log oot (1+log~)

C
7? -1
(3.12) (j=0,1,...,d~ > 1).

Proof. Obviously, we can suppose yp,, < 47. There is a constant 4 € (1,7) from
(3.6) such that

27 1 . 1 =N
[ 317008 + 50 o o)) | as
0 €n

C(1 +logv) Pn
o T (+2)

Replacing (2.19) by (3.13) and repeating the proof of Lemma 2.3, we can deduce
(3.12). O
LEMMA 3.3.

m N m
B14) B (%Bl\ U B2n(ak>> < (Z S+ |dk> 1og% +C,

k=0 k=0 k=1

L min |a; — a4l

where 0 < n <
=1 em
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Proof. (3.14) follows from (3.8), (3.9), and (3.12) in terms of the argument used
in the proof of Lemma 3.1. O

From (3.14) and a result in [3] there exists a harmonic function u, defined in
Bi\ U~ y{ar} such that

(3.15) Up — Uy in Cp, <Bl\ U {ak}> as n — +o00.
k=0
4. The degrees of the singular points.
LEMMA 4.1.
(4.1) do >0, 0<m<d,
(4.2) di =1, akEBl\{O}, k=1,2,....m ifm>1

Proof. Because chvzo 62 < C, we can assume Zgﬂ 62 and ¢y are independent of
n (by passing to a further subsequence).

Since ay,(k = 1,2,...,m) are the limit points of {z}7, (2 = zx(n), Mm = Mm(n))
as n — +oo, (3.1) and (3 14) imply

(4.3) de #0, k=1,...,m,

(see [2, Step 1 of the proof of Theorem VI. 2, p. 61]).
It follows from (3.14) and (3.15) that

(4.4) di = deg(u«,0B,), k=0,1,...,m,

and

(4.5) l/ |Vu,|? < (i 67 + Em: |dk|> 1ogl +C
2 JB\Ugo Ba(an) o S 77
<1 L= a).

where 0 <n < g 0<£1gn<m la; — a;

Set I ={k|0 <k <m,a € 9By} and I’ = {0,1,...,m}\I. Then we have from
[2, Lemma VI.1, p. 63 and Corollary I1.2, p. 33] that

1 1
(4.6) 7/ Vi > 2l log - — C for kel
2 J(BinByy (ar))\ By (ax) n
and
1 2 2 1 /
(4.7) = |[Vu,|* > w|dg|*log — — C for ke I';
2 J By (ar)\ By (ar) n

here, no =1 min |a; — a;.
' 40§i<j<m| i~ ]

Combining (4.5)—(4.7), we have

N m
(4.8) <22 |dg| + Z |dk|2> log — < <Z 62 + Z |dk|> log— + C.
k=0 k=1

kel kel’
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Taking 1 so small that C/ 1og%} < 1, we get from (4.8) that

N m
(4.9) 23 dp| + > kP <D 67+ ldl.
k=0 k=1

kel kel
It is obvious from (3.8), (3.9), and Lemma 3.2 that

(Z |d| +Z§,€> loga + 82 logg

k=1 k=1
. 1 N2 1 .
(4.10) S]logs—+(d—]) 1ogp—+C’, j=0,1,...,d.

Suppose £ = 2max{en, pn} = 26, > 2p,. Then we get from (4.9) and (4.10) for
7 = d that

- C
(22 |di| + Z |dk|2 - kz_%)dk> < m;

kel kel’

therefore, for n large enough,

(4.11) Z(2|dk‘ —dg) + Z(|dk|2 — dk) <0,

kel kel’

which, together with (4.3), gives I = 0, 0 < dy < 1, and dy, = 1(k = 1,2,...,m).
Thus (4.1) and (4.2) are true if £, > p,,.

Suppose £ = 2max{ey,, pn} = 2pn > 2¢,. Then we find by taking j = d in (4.10)
and letting n — +oo that

(4.12) > ldi| < d;
k=1
consequently,
(4.13) dy=d— dp>d-> d>0.
k=1 k=1

In particular, we have
(4.14) 60| < do.

So we can let j = d — |é| in (4.10), and by noting (4.9) we get
23 ldel+ Y ldif* = 0§ < d 6o,

kel kel’
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that is,
Z(2|dk| —di) + Z (Idw|? — dy)
kel keI {0}
< 6% —dE 4+ dy — |0
= (do — [60])(1 — do — [60]) < O;

consequently, ] = ¢ and d, =1 (k=1,2,...,m). Thus (4.1) and (4.2) are also true
when ¢, < p, for n large enough. 1]

LEMMA 4.2. There is a constant u > 1, depending only on g, such that for n large
enough

(4.15) do <k if en>pup?*t (k=2,...,d)
and

1
(4.16) do >k if en < ;pi’“‘l (k=0,1,...,d—1).

In particular, for n large enough,

(4.17) doy>1 if ep < ipn,

(4.18) do=k if pp*t<e, < ipik_l (k=1,2,...,d—1),
and

(4.19) do=d if e, < ipidfl.

Proof. Suppose &, > p, for n large enough. Then 0 < dy < 1 by (4.11) and,
therefore, (4.15) holds. Note that the condition of (4.16) does not hold when ¢, > p,
for n large enough.

Suppose €, < p, for n large enough. Then by (4.9) and (4.10) we have

1 1 1 1
(d — do)log — + d3log — < jlog — + (d — j)*log — + log 1,
En Pn En Pn
where p1 = e“. Hence
. . 1 . 1
(4.20) (do —d+j)(do +d — j)log o < (do—d+j)log - + log p.
n n
Suppose dg > k for k =2,...,d. Letting j =d — dp + 1 in (4.20), we find
1 1
(2dg — 1) log — < log — + log p,
Pn En
which is followed by

1 1
(2k —1)log — < logg— + log ,

n n
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that is

2k—1
En < WPy -

Thus (4.15) is true.

Suppose dy < k for k =0,1,...,d — 1. Letting j =d — dyp — 1 in (4.20), then

1 1
(2dg + 1) log o > log P log i,

which is followed by

So, (4.16) is also true.
(4.17)—(4.19) are direct consequences of (4.15) and (4.16). 0
Now the proof of the theorem stated in section 1 is completed.

Appendix. Let Bgr be the disc of radius R centered at 0. Let py,po,..

points in Bpr such that

(Al) 4R1§|p]|§R/2, j:1,2,,m,
and
(AQ) |pj—pk|24R0, 1<k<ji<m, O0<Ry<R; <1
Set
(A.3) Q = Br)\ U Br,(pj) U Br,
j=1

Let u be a smooth map from €2 to C and assume

(A.4) 0<a<|u<1 inQ,
(A.5) € (|ul* = 1)? < Klog i,
Rg Q - Ry
1
(A.6) = (lul? =12 < K,
Rg Jons 1 (#5)
0
and
1
(A7) ?/ (Jul* - 1) < K.
1JB
R
Set

o =11 (2=5)”

G20 |z — p;

where pg = 0, dy = deg(u,0Bg,), and d; = deg(u, 9Bg,(p;)), 1 =1,2,....,m

., Pm be
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THEOREM A. Assume (1)—(7); then

(A.8) /|vu\2 /|Vu0|2

where C' depends only on a, m, K, and d; (j =0,1,...,m).
Proof. Set p = |u|. There is a well-defined single-valued function ¢ : Bg — R
such that

(A.9) u = puge’™  in Q
and
(A.10) [ wepsc [ v
Br Q
where C' is some universal constant (see [2, Appendix IV, Lemma A.1]). Write
(A.11) up = €0 o = Zd 0;, 0; =Arg <1‘—p]) .
|z — pj

Let rj = |z — pj|. Then

(A.12) Vo, =

V.
2 j=0,1,...,m,
rj

where V() is the unit vector tangent to the circle of radius |z — p;|, centered at p;.
We have from (9) that

(A.13) [Vul? = [Vl + p?|Vpo + Vil

and consequently

(A.14) /|Vu|2 2/ |Vp|2+/ \Vu0|2+/a2|w|2—
Q Q Q Q

where

_ _ 2 2 _ 2 . _
X—/Qu V0l +2/Q<1 V0 - Vi 2/QV<P0V1/)

=X+ X9+ Xs.

(A.15)

Estimate of X;.

|X1\sc/9<1—p2> S v | =c d?/g(l—fnw.
§=0

Jj=0

For j =1,2,...,m, we compute

Ja=ewe< [ -

1 2
/ N / ( 2p )
OB 1(p;) JONB 1 (p;) Ty

1
R?2
R4

w.ﬁm‘ =

Rg

EII +IQ7
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1/2 1/2

1
L < / (1-p%)? / I
QB 1 (p)) NB 1 () T

Rg

1\Y2 /or\ 2
< | KR?log — =
< (wrgros ) (%)

1 1/2
1

M
A~
F|=

\
2=
~—
=
[

1 1/2
1

Here we have used (5) in the second inequality.
Similarly, using (6), we have

1/2 1/2

212 1

I, < / (1-p7) / vy

QNB %(p,-) QNB %(I)j) T
R3 Ry

o \Y2 /1 1 \?
< (KR})V? [ =— — - <C.

— ( O) 3 R% RO -

Hence
/(17p2)|V0]|2§C, J=12,....m.
Q
We can also show by the same method as above that
[a-mive<c.
Q
Hence, we yield

(A.16) 1X1] < C.

Estimate of Xs.
2, C 212 2 2 C
[Xo| <p [ VO[T +— [ (1=p")"[Vol” < | [V + —X;.
Q BJo Q 12
So (1.6) gives
s C
(A.17) | Xo| < A IVy|© + m (u>0).

Estimate of X3.

X3 = —2/ VipoVip = —2Zdj/ Vo, - Vi = —2Zdj/ AV
Q =0 Q =0 Q'lj
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For j =1,2,.

/ / Jw § / Jw 4] Vi
Qr Q\Bry (p;) T krj Y Bro(pr) 'J Br, Tj
k#0

=J+ Jo+ J3.

Let p; = R—|pj| (j =1,2,...,m). Then £ < p; < R by (1). Since

o
/ V;Vip = 8—1/’:0 for 0 <r<p;,j=0,1,...,m,
0B (p;) 3B, (p;) 9T

we have
/ ViV o iZ01,.. . m.
BP]‘(P]‘)\BR[)(P]‘) Tj
So
1
| < — VY
Pi JO\B,, (p;)
QO[1/2 1/2
<z (/ |le2>
Pj Q
C
<u [ IVoP+ 5 (>0
Q K
The assumption (2) implies 7; = |z — p;| > |px — pj| — Ro > 3Ry for =z €
Bpr,(pr)(k # j). Therefore
Bl S 5 vy
2| <
3R Brg (P)

1/2
<C / |Vy[?
Brg (pr)
C
<u [ v+
Q M

Here we have used (10).
Similarly,

C
5] < u/ w2+ &
Q H

Hence

V; C
[ vl <u [ WP+t i=12m
¢ Q H

2 Ty

We can also deduce by the same method that

‘ / w' |vw|2 LG
i
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Thus
, C
(A.18) Xsl <o [ V2 +
Q M

Now, by combining (14)—(18), we yield

C
/|w|2 Z/|Vp|2+/ |Vuo|2+a2/ |W\2—3u/ vor—C e
Q 9] Q Q Q U

therefore, Theorem A is proved if we take p = %f. |
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ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS
TO A LANDAU-GINZBURG SYSTEM WITH VISCOSITY
FOR MARTENSITIC PHASE TRANSITIONS IN SHAPE MEMORY
ALLOYS*

JURGEN SPREKELS', SONGMU ZHENG#, AND PEICHENG ZHU#%

Abstract. In this paper, we investigate the system of partial differential equations governing the
dynamics of martensitic phase transitions in shape memory alloys under the presence of a (possibly
small) viscous stress. The corresponding free energy is assumed in Landau-Ginzburg form and
nonconvex as a function of the order parameter. Results concerning the asymptotic behavior of the
solution as time tends to infinity are proved, and the compactness of the orbit is shown.

Key words. nonlinear thermoviscoelasticity, shape memory alloys, phase transitions, asymp-
totic behavior, compact orbits, Landau—Ginzburg theory
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1. Introduction. In the present paper, we study the asymptotic behavior of
the solutions to a system that arises in the thermomechanical developments in a one-
dimensional heat-conducting viscous solid of constant mass density ¢ (assumed to
be normalized to unity, i.e., o = 1). The solid is subjected to heating and loading.
We think of metallic solids that not only respond to a change of the strain € by a
(possibly nonlinear) elastic stress ¢ = o(e), but also to a change of the curvature of
their metallic lattice by a couple stress p = p(ez).

We assume that the Helmholtz free energy density F' is a potential of Landau—
Ginzburg form, i.e.,

(1.1) F = F(e,e4,0),

where 6 denotes the absolute temperature. To cover systems modelling first-order,
stress-induced, and temperature-induced solid-solid phase transitions accompanied
by hysteresis phenomena, we do not assume that F' is a convex function of the order
parameter €.

A particular class of materials, in which both stress-induced and temperature-
induced first-order phase transitions leading to a rather spectacular hysteretic be-
havior occur, are the so-called shape memory alloys. In these materials the metallic
lattice is deformed by shear, and the assumption of a constant density is justified.
The shape memory effect itself is due to martensitic phase transitions between dif-
ferent configurations of the crystal lattice, namely, austenite and martensitic twins.
For an account of the physical properties of shape memory alloys, we refer the reader
to Chapter 5 in the monograph [4]. In a series of papers (cf., for instance, [7], [8]),
Falk has proposed a Landau—Ginzburg theory that uses the shear strain € as order
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parameter in order to explain the occurrence of the martensitic transitions in shape
memory alloys. In this connection, we also refer to the works of Miller (cf., [1], [14]).
The simplest form for the free energy density F' that accounts quite well for the

experimentally observed behavior and that takes couple stresses into account is (see
Falk [7], [8]) given by

1)
(1.2) F(e,e4,0) = Fo(0) + F1(e)0 + Fa(e) + 55;‘;,
where
(1.3) Fi(e) = aie2, Fye) = ase® — ane® — 16,62,
0 _
(1.4) Fy(0) = —=Cy0Olog <9> +Cvo+C,
2

with positive physical constants 01,8, oy, oo, g, 02, Cyy, C. The constant Cy denotes
the specific heat. Observe that in the interesting range of temperatures, for 6 close to
61, F is not a convex function of the shear strain €. In fact, F(-,e,,0) may have up
to three minima that correspond to the austenitic and the two martensitic phases.

We want to forecast the dynamics of the phase transitions in the one-dimensional
situation. To this end, let Q = (0,1), and, for ¢t > 0, Q; = Q2 x (0,¢). Then the balance
laws of linear momentum and internal energy read

(1.5) Uy — Op + Pge =0, in Qo
(1.6) Ui +qy — 06 — e =0, in Q.
The second law of thermodynamics is expressed by the Clausius—Duhem inequality

(1.7) S, + (%)x >0, in Q.

Here, u, o, u, U, q, €, S, and 6 denote displacement, shear stress, couple stress,
internal energy density, heat flux, shear strain, entropy density, and absolute temper-
ature, in that order.

For one-dimensional homogeneous thermoviscoelastic materials, we have the con-
stitutive relations

OF oF oF
1.8 = = — =—, S=——, U=F+0S
( ) £ Ug g 85 + YEt, M 5€z ) 69 ) + )
where v > 0 is the viscosity. For the heat flux ¢, we assume Fourier’s law
(1.9) q=—kb,,

where k > 0 is the heat conductivity (assumed constant). Obviously, this assumption
implies the validity of (1.7), so the second law of thermodynamics is automatically
satisfied.

Inserting the constitutive relations in the balance laws (1.5)-(1.6), we obtain the
system of partial differential equations

(110) Ut — (fle + f2):r — Y€zt + 5”1119: = 07 in Qoov
(1.11) Cy 0y — KOy — f10s; —vei =0, in Qg

(1.12) €=Uz, In o,
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where

(1.13) fi=file) = Fi(e), f2= fa(e) = Fi(e).

In addition, we prescribe the initial and boundary conditions

(1.14) Ulpeo = €xlzm0 = 0, €la=1 = (YUzt — SUzzy + 01)|z=1 = 0,
with

(1.15) o1 = f10 + fa,

as well as

(1.16) 0z)z=0,1 =0,

(1.17)  u(z,0) = up(z), ue(z,0) =us(z), 6(x,0)=6by(z) >0, z€ Q.

The physical meaning of the boundary conditions is clear; for instance, the second
condition at © = 1 describes the stress-free situation.

Next, we employ an idea of Andrews [2] and Pego [17] to simplify the problem by
introducing the velocity potential

(1.18) p(x,t) = /11 ut(y,t) dy .
Then,

(1.19) €t = Prz, N oo,
and (1.10)—(1.11) can be rewritten as

(1.20) Dt — VPaow + 064e — 01 =0, in Qg

(1.21) CvO; — kbyz — [10D00 — D5, =0, in Q.
Accordingly, the initial and boundary conditions (1.14), (1.16), (1.17) become

(122) pz|z:0 = przz'm:(} = Ecc‘mzo = 07

(123) p‘z:l :pzz|z:1 = <<5|m:1 = 0;

(1.24) e(x,0) = &0 = ugz, p(x,0)=po(x)= /j u(y)dy, 6(x,0) =0, xc.

It is easy to see that if (u,v,0) is a smooth solution to (1.10)—(1.17), then (e, p,0) is
a smooth solution to (1.19)—(1.24), and vice versa. Therefore, it suffices to consider
the problem (1.19)—(1.24). In what follows, we assume without loss of generality that
Cy =1

Before stating and proving our results, let us first recall some related results
in the literature. In the case § = 0, Dafermos [5], Dafermos and Hsiao [6], Chen
and Hoffmann [9], and Jiang [11] proved the global existence of a classical solution
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to the system of (1.10)—(1.12) with various boundary conditions for a class of solid-
like materials. However, an analysis of the asymptotic behavior as ¢ — co was not
performed in these papers. Recently, on the basis of Dafermos [5] and Dafermos and
Hsiao [6], Luo [13] further investigated the asymptotic behavior of smooth solutions
as time tends to infinity for a special class of solid-like materials in which e = Cy 6,
F, =0, and 6 = 0. Racke and Zheng [18] obtained global existence, uniqueness, and
the asymptotic behavior of weak solutions to (1.10)—(1.12) for § = 0 if both ends of
the rod are insulated and if at least one end is stress-free.

In the case 6 > 0, we refer to Sprekels and Zheng [20] if 6 > 0,7 = 0, and to
Hoffmann and Zochowski [10] if § > 0,7 > 0, for global existence and uniqueness
results for Falk’s Landau—Ginzburg model of shape memory alloys. However, the a
priori estimates for the solution obtained in these papers depend on ¢, and hence the
asymptotic behavior of the solution for ¢ — oo could not be treated there.

We also refer to the works of Andrews [2], Andrews and Ball [3], and Pego [17]
for the isothermal and purely viscoelastic case.

The purpose of our contribution is to study the asymptotic behavior as t — oo of
the solutions to the system (1.19)—(1.24) and to prove the compactness of the orbit.
Next, we state the main result of this paper.

THEOREM 1.1. Suppose that eq,po € H?, and 0y € H' are given functions that
satisfy the compatibility conditions  poz|z—0 = €ozlz=0 = 0, Polz=1 = Przle=1 =
€x|z=1 = 0, and suppose that 0y > 0 in [0,1]. Then the following results hold.

(i) The problem admits a unique global solution (g,p,8) satisfying

ec C(RY; H?), & € CRYHY)YNLART; H?);
pe CRT; HNL*(RY; HY, p e CRT;HY)NLART; H?);
6 cCRYHY, 6, l2RT;HY), 6, L>(RT;L?),

(1.25) O(x,t) >0 V(x,t) € [0,1] x RT.

(ii) As t — oo, it holds that
(1.26) oG, O)llgs — 0, lpe(5 )l e — 0,
(127)  bewa(-t) = o1, B)llmr — 0, lee( D)l — 0, [[6a( )] — 0.

(iii) For all v > 0,
(1.28)  e€ Oy, +00); HY), p e C([v,+0); HY), 6 € C([v, +00); H?);

i.e., the orbit is compact in H3 x H3 x H'.
(iv)
(1.29)  (e(-,t),p(-,1),0(-, 1)) — (£,0,0), as t— o0, in H>x H>x H,

where (g, 0) is one of the equilibria for the corresponding stationary problem.

The main difficulties in proving Theorem 1.1 are due to the higher degree of
nonlinearity inherent in the system (1.19)—(1.21) and to the higher order derivative
arising for 6 > 0. The presence of this higher order derivative makes the problem in
two ways significantly different from the problem with § = 0,v > 0: it renders the
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orbit compact (while discontinuities of strain will persist in the case § = 0,y > 0, as
shown in [18]), and the technique needed to obtain the asymptotic behavior differs
considerably from that used in the case 6 = 0,y > 0. One of the main ingredients of
the proof in this paper is to bound the norms of €, p, as well as their derivatives, in
terms of expressions of the form

t
(1.30) 4 s (00l + ([ Il ar)”,
0<7<¢t 0
where 0 < a < %,0 < B < % This makes it possible to reduce the degree of
nonlinearity via interpolation techniques. To study the asymptotic behavior, we will
make repeated use of a basic lemma in analysis proved in Shen and Zheng [19]. In
section 2, we will prove the uniform a priori estimates and the compactness of the
orbit. In section 3, the asymptotic behavior is investigated.
The notation in this paper will be as follows: LP, 1 < p < oo, W™ m € N,
H' = Wh2 and H} = Wol’z, respectively, denote the usual Lebesgue and Sobolev
spaces on (0,1). By (+,-), we denote the inner product in L?, and | - ||z denotes
the norm in the space B. We use the abbreviation || - || := || - ||z,, and C*(I, B),
k € Ny, denotes the space of k-times continuously differentiable functions from I C R
into a Banach space B. The spaces L?(I,B), 1 < p < oo, are defined analogously.
Finally, 0; or % or a subscript ¢ and, likewise, d, or a subscript z, denote the partial
derivatives with respect to ¢ and x, respectively.

2. Uniform a priori estimates. The general framework to prove global exis-
tence and uniqueness of solution has been established in earlier papers, for instance,
in Sprekels and Zheng [20] and Hoffmann and Zochowski [10]. The setting will become
more apparent soon during the derivation of uniform a priori estimates. Therefore, we
can focus our attention on the study of the asymptotic behavior and on the compact-
ness of the orbit. In order to get the asymptotic behavior of the solution as ¢t — oo,
we shall prove uniform a priori estimates on €, p, and 6 with respect to t. From now
on, we will always denote by C' a universal positive constant that may depend on the
initial data, but not on t.

LEMMA 2.1. For any t > 0, the following estimates hold.

(2.1) le@Il + lle@lize + llp (@) + lle=@I + 6@ < C,
(22) Ip(@)[lL + lle(®)lze < C,
(2.3) O(x,t) >0 V(x,t)€0,1] x RT.

Proof. First, applying the maximum principle to (1.21), we find that
(2.4) O(x,t) >0 V(z,t)€[0,1] x RT.

Next, multiplying (1.20) by —p.., adding the result to (1.21), and integrating with
respect to x over ), we arrive at

(25) s e+ L L) (ar—o
. i J, (e 2pz 2505 x=0.
Thus,

! 1 )

0

where F; is a constant depending only on the initial data.
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Using Young’s inequality, we see that

(27) FQ(E) Z 0166 — CQ s
and thus,
(2.8) le@I + ez + llea@I + le@®)l[ze + [16@)][r < C.

By virtue of the boundary conditions and of Poincaré’s inequality, we find
(2.9) Ip@)llzee + [l < C,

from which the assertion follows. 0
LEMMA 2.2. For any t > 0, the following estimates hold.

(2.10) / / ( p”) dadr < C,

t t t
(2.11) / pa(r)|dr < / [pa(r)|3wdr < C, / lp(r)|2mdr < C,

t
(2.12) / Ipa(r)[*2dr <C ¥ 1> 0.
0

Proof. Multiplication of (1.21) by §~! and integration with respect to = over Q
yield

1 2 2
(2.13) % /O (log 0 — Fy(c)) (t) dz — /O (kai + W;“) (t) da = 0.

Since logf <6 —1 for all § > 0, we obtain

(2.14) // (W Ws )dxd7'<0

From p;|,—0 = 0 it follows that

(2.15) pz(z,t) = p.(0,8) + /prm(y,t) dy = /0”” Pz (y,t) dy.

/t ||Pz(7)||%ood7§/t /01 |Pm(:£,7)\dx)2d7
7/ </ f“i;f' x) d¢</0t(/019dx)(/01p§zdx)d7

(216) < c/ / Pis g dr < C.

Hence,

Thus,

t t
(2.17) / lpa(r)|2dr < / 1p2(7) 2 i < C.
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Combining (2.11) with (2.8), a simple induction yields that to any n € N there is
some C' = C(n) such that

t
(2.18) [ Ipaiar <c.
0

The proof of the assertion is complete. O

In what follows we will see that (2.18) is very useful for reducing the degree of
nonlinearity. To get further estimates, we will now derive estimates for the derivatives
of the norms of ¢, p by expressions of the form (1.30).

LEMMA 2.3. For any t > 0, the following estimates hold.

(2.19) /0 (lee(DII? + llpza(1)]1?) dr < C sup [|6(r)l[z=,

t
(2.20) / 10.(7)2dr < C sup [0(7)|2.
0 0<r<t

Proof. Using Lemma 2.2, we obtain

/ e ()P = / Vit

p‘LI
< sup |6 oo T dT
< s [0 |22
(2.21) < C sup ||6(7)| e
0<r<t
Similarly, we have
t
(2.22) | 10a0)12ar < € sup 1667)
0 0<r<t

The proof is complete. 0
We can now show further estimates.
LEMMA 2.4. For any t > 0, the following estimates hold.

IO + Ipera®IF + [ Upars)IE + ()
(2.23) sc<1+ sup [0 + / 16:(r ||2dr),

0<r<

leze(t)]1? + /(szmcx( MZ + llewad (7)) dr
(2.24) <C<1+ sup 10(7)]13 o + / 164 (7 ||2d7>.

0<r<

Proof. First, differentiating (1.20) with respect to ¢, multiplying the result by
—eyt, and integrating with respect to x over 2, we obtain

0 = (pee(t), —pawt(t) + e (O)” + (0t (t), €2 (t)) + /o o1(t) et (t) do
= (Pzet(t), P2t () + Ylew@®)® + 8(eae(t), £are ()

25) [ (04 e+ AE 0O eult) da
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Combination with (2.9) yields

1d

535 P O+l 1l < Jlen®P+C [ (e et+o) o) do

(2.26)
Integrating (2.26) with respect to t and applying Lemma 2.3, we arrive at

et (O + leat (O] + / lew(r)||dr
sc+cANMﬂMﬂW+mmw%W@MWMT
<+ C s 0(r m@/na WW+C/HQ 2+ 16:(0)I) dr

2n) < (1+ swp [o(r ||Loo+/ 16.()Pdr).

0<r<

Here, we have used Young’s inequality in the form a < Ca® + C".
Next, we differentiate (1.20) with respect to ¢, then multiply by €., and integrate
the result with respect to x over {2 to obtain

0= (ptt(t)agmt(t)) - 'Y(Stt(t)agmt(t)) + 5H5mt(t)||2 - /O Emt(t) o14(t) dx

1
= (Paate(t),€2(8)) + Y(ewre (1), €0t (1)) + Sllewar (B)]1* — /0 Eaat(t) 01:(1) d

_ %(pm(w,gt(t)) — P (8)1 +

1
(2.98) - / e vut () o1 () da.

0
However, by integration by parts, we have

(229) (pxrt (t)7 €t (t)) = 7(pxt (t)v Ext (t))
Combining this with (2.28), and using (2.23) and Young’s inequality, we find

t
gl
Hew(®IF +6 [ llewn(r)|dr

2 2
2 earOI? + 8llea(t)]

<4 § [ leantldr +0 (Il + / (w2 + [psae (7)) )

(2.30) < C(1+oiuP 10(T)|13 —l—/ 10: (7)) dT / lewwt (T)||%dr .
The proof of the lemma is complete. 0

In what follows, we will find that the above lemma plays a crucial role in reducing
the degree of nonlinearity.
LEMMA 2.5. For any t > 0, the following estimates hold.

(2.31) 102 ()12 + / 16,(7)|dr < C.

(2.32) sup [|6(7)||p=~ < C.

0<r<t
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Proof. Multiplying (1.21) by 6; and integrating with respect to x over Q, we
obtain

S IOOF 100 = [ (51600 +7052) () o

¢ (I@pe@ 001+ ([ shatras) o)
& (10N Ipex Ol ([ 001 ) 10,01 + a0 0]

Therefore, integration with respect to ¢ yields
t
0P + [ 1orlar
sc(sup 1601 / [ac (D3 dr) / Jo0(7)|ar)

+ ([ alitear)* ([ 1ar) +1)

(2.34) =C(L+L+1).

IN

(2.33)

I /\

We now estimate the terms I, I5. By virtue of Nirenberg’s inequality and the bound-
ary conditions, we obtain

1 1
(2.35) [Pzz(t)l| e < C'l|Paaaa ()2 [IP2(B)]]2,

5 54
(2.36) [P2a ()]s < C l[Praaa ()] 72 |2 (2)]] 2.
Hence,

- (sup 16071~ / 10:()2dr / [pes(r ||Lwdr)
0<r<
sc(sup 100 12 / 10.()|dr / |pm<r>|||pz<7>||df)
o<r<t 0
3 t t
(sup 1001 / 16, |dT) ( / [Pasaa(r)]2dr / ||pm<7>|2dv>

Using Lemmas 2.2 and 2.4 and Young’s inequality, we conclude that

3 t i
11<c(sup 1601 / 16:(r |df) ( / |pmm<7>2d7)
0<r<t 0
¢ i
<c (w 100 / 10:)] dT) (1+ sup [0+ | ||ot<r>||2dr)
0<r<t 0

<1 [ Wpar o (1+ s o).

0<7r<t

I

| /\

(2.37)
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Next, owing to Schwarz’s inequality and (2.36), we have

t t B
12:c< [ | ||pm<r>||‘i4dr)

<o ([ 1wl [ ol ||pz<T>||5dT);

5
2

(2.39) <C </Ot et(f)%zf)% </Ot pmm(f)n?dT) 1

Applying (2.18) with n = 12 and Lemma 2.4, we get

L
2

(/ t Ios ()l )

5
2

L<cC (/Ot |at(7>2d¢>é (/Ot |pzm<T)||2dT> 1

t 3 t iz
<o [ inmiar) (1 sw ol + [ o))
0 0<7<t 0

1/t 5

2a0) <3 [ 16n)Pdr+C sup o]+ C.
4 Jo 0<r<t

Owing to Nirenberg’s inequality and (2.1), we have

241) 0@~ < C 105 16DE, + C D1 < Cll6.0)]1F + C.

Combining (2.38)—(2.40) with (2.34) and (2.41) and applying Young’s inequality, we
find

t 1 t
o7 + [ e lPar < 5 [ loolar+0(1+ s 0.0
0 0 0<r<t
1 t
(242) <oy ([ 1ok sw j6.0]R).
2 \Jo 0<r<t
Taking the supremum with respect to ¢ in (2.42) yields

t 1 t
i) s 0.0+ [ 10l < 3[R+ s 10.0) +
0 0 0<r<t

0<r<t
Hence,
t

(2.41) sup 6.+ [ 16:(7)|Par < C.

0<r<t 0
Thus, using (2.41),
(2.45) sup [|0(7)[3 < C,

0<r<t

which concludes the proof of the assertion. 0

Combining Lemmas 2.3-2.5 and using the system equations, we immediately con-
clude with the following lemma.
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LEMMA 2.6. For any t > 0, the following estimates hold.

(2.46) /0 (Ipaa (I + e + 102 (1) 12) dr < C,

(2.47) /O IPaae (DI + e (P + IPrwee (DI + lewa(T)?) dr < C,

(2.48) 1Pt ()1 + [Powa (D1 + leat (DI + lewes ()] < C.

LEMMA 2.7. For any t > 0, the following estimates hold.
t
(2.49) /0 e (D + [lpe (M) Zoe + P2t (P + [Pae (T)][Z0e) d < C,
t
(2.50) / (8222 (7) = o1 (7)[IPdr + [[(820 — 01)e(T)]*) dr < C,
0

t
(2.51) /0 (Ipze ()20 + 1Pzwa (M + [IPzze (T[T + [Ipee(7)]|?) dr < C,
(252)  lpe@I? + [pae @I + P @) + 1P @)l Ze + [IPza(®)[[ T < C.

Proof. These estimates can easily be derived from the system equations and from
Lemmas 2.5 and 2.6. 0

Now we proceed to investigate the compactness of the orbit of the solution for
t > 01in H3 x H® x H'. For the time being, we assume that the initial data are
so smooth that the solution will have enough smoothness to carry out the following
argument: if the initial data belonged just to H> x H? x H', we could approximate
them by smooth functions and then pass to the limit.

Differentiating (1.20) twice with respect to ¢, we find that

(2-53) Dttt — VPzwtt + Oaatt — 014t = 0.

A straightforward calculation yields
(2.54) o1t = f1(€) €t 0 + 2 f1(e) €4 0 + f1(€) O + 5 () €2 + fhe) e

Multiplying (2.53) by p: and integrating with respect to x over €, we find

0= 3 SO = A Peaie8) Pu(0)) + 8(ereaa(t),pu()) — (1a(t), (1)
= S eI+ pere (1P + alt),pasee(8)) — (106),pu()
(255) = 5 % (@I + llewI?) + A pece ] ~ (or00(0) pa(t).

Multiplying (2.55) by ¢? and using (2.32), as well as Lemmas 2.6 and 2.7, we obtain
that
1d
L2 + 28 — e )+ Bllec) + 712 e (1)
< Cllpe ()] + Ot (1)

(2.56) < Ellpe ()] + C(llewe (0)I* + 106 ()| + 10 (£)* + llee()]|) -
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Hence, it follows from (2.31), (2.46), and (2.47) that

t t
t2(llptt(t)||2+5||6tt(t)||2)+/ 72 |[pane (7)|Pdr < 01+Ct2+0/ 720 (1) |dr
0 0

(2.57)

where C1 = C([leol[ 12, lpoll a2, [|oll m1)-
On the other hand, differentiating (1.21) with respect to t, we get

(258) ett - kozmt - (fl (5)9Pm + ’-Ypir)t = O

Multiplying by 60;; and integrating with respect to x, we arrive at

k d
2dt
(2.59) < %Hett(t)HZ + C (Ipas O + 1101 + Izt ()]1*)-

1020 + 18O < SN0 + 51 (pas + 7220 DI

Multiplication of (2.59) by ¢ yields

kd t?
5 25 El02eOIP) =kl 020 (DI +5 10 (D* < C (lpaa () *+116: () [+ [P (1) [)-

(2.60)

In order to estimate fg7'||9m(7')||2d7, we multiply (2.58) by 6; and then integrate
with respect to x over {2 to obtain

SOOI + K87 < ZI0I” + 51 (F1(€)0pee + 1020 DI
(261) < 102 +C (e + 10O + Dpwae(t)).

Multiplying (2.61) by ¢, we find

1d
§£(tll9t(t)||2)+kt\|9m(t)H2 < C (101210 0N+t (lee 0N+ 10: () 1>+ paae (D]I))-
(2.62)
Therefore,
t
(2.63) ACAGIE +/ 7|02 (7)||?dr < Ct + Cs,
0

where Co = C(|leo|| m2, [[poll 2, |60 1)
Combination of (2.63) with (2.60) yields

t
(2.64) / 22(00(7) |27 < Cs + C12,
0

with C5 = C(|leol| #=, [poll m=, [10ol| rr1)-
Thus, it follows from (2.57) that

(2.65) lpee )17 + [lere (B)[I* < Cat™ + C.
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Also, using (2.63) and (2.60),
(2.66) 10:() 1> < C+Cut™, |0u:(1)||? < Cut™2+C,

with Cy depending only on ||eo| g3, [|pol| z3, |00 1 -
Thus, it easily follows from equations (1.19) to (1.21) that for any initial data in
H3 x H3 x H', the following holds:

(2.67) (e(, 1), p(+,1),0(-,t)) € H* x H* x H* V1> 0.

Moreover, we can infer from Lemmas 2.5 to 2.7, and from (2.55), (2.59), and (2.61),
that for any v > 0 the triple (g, p, #) is bounded in C([v, +00); H* x H* x H?). From
this the compactness of the orbit in H? x H3 x H' follows. 0

3. Asymptotic behavior. In this section, we will prove the results on the
asymptotic behavior of the solution given in Theorem 1.1. In what follows, a conver-
gence symbol “—” is always to be understood as ¢t — oo. We will make use of the
following basic lemma from Shen and Zheng [19].

LEMMA 3.1. Suppose that y and h are nonnegative functions on (0,00) such that
y' is locally integrable and such that y, h satisfy

(3.1) VE>0: g (t) < Ai(t) + Ag + h(t),
T T

(3.2) VT >0: /y(T)dT < As, /h(T)dT < Ay,
0 0

where Ay, Aa, Az, Ay denote positive constants which are independent of t and T.
Then, for any r > 0,

A
(3.3) VE>0: ylt+r) < (: + Aor + A4> ez,
Moreover,
(3.4) tlim y(t) =0.

LEMMA 3.2. It holds that

(3.5) Pl zz — 0, |lpe()| 2 — 0,
(3.6) ez — 0, [[(6ezz — 1) (E)||m — 0,
(3.7) |t ()| g2 — 0.

Proof. Tt follows from (2.26) and (2.32) that

@ e ®I? + 8l ) + Al

< C (10 eI + llee®I* + 16:0)117)
(3.8) < C(llee®I” + 10:B)P).-
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Combining (3.8) with (2.51), (2.46), (2.49), (2.31) and applying Lemma 3.1, we arrive
at

(3.9) [Pat(@)|I? + lleae()]|* — 0.

Hence, ||pszz(t)]|? — 0, and thus ||ug|| gz — 0.
Next, we differentiate (1.20) with respect to ¢, then multiply by e, — o1, and
integrate with respect to = over €). It follows that

1d

5 716522 (8) = a1 (B)II* = —(Pue(t) — veu(t), beua(t) — 01 (#)

(3.10) < %Il&m(t) — a1 + Cllpee I + lleee(®)]1?)-

Combining (3.10) with (2.50), (2.51), (2.47) and applying Lemma 3.1, we conclude
that

(3.11) |6e22(t) — a1 (t)]|* — 0.
From (1.20) and (3.9), we also get
(3.12) (8220 — 01)2 ()] — 0.
The assertions of Lemma 3.2 now follow from the above estimates and from Poincaré’s
inequality. 0
LEMMA 3.3. It holds that
(3.13) 16 ()| — 0.
Proof. We multiply (1.21) by 6; and integrate with respect to & over Q to get
kd
2 dt
1
(3.14) < SN0 + 116 paw (DI + lIPZ0 (DI

10617 + 181 = [ (402200 + £1(6)000pes) (1) d

Combining (3.14) with (2.32) and (2.52), we see that
d 2 2 2
(3.15) k10 @17+ 10: I < Cllpze ()]
Hence, we can infer from (2.46) and Lemma 3.1 that
16 (®)]* — 0,
which concludes the proof. 0
Concerning the convergence of €, u, 6, we have the following result.

LEMMA 3.4. It holds that

(316) (E(-7t),p(~,t),9(-,t)) - (?,0,5)7 in H3 X H3 X Hla

(3.17) u(t) =@, in H*, with ﬂ(;c):/ gly)dy Yz e[0,1],
0
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(318) 651z - fl (5)9 - f2(€) = 07
(319) 5x|ac=0 = 07 E|x=1 = 07
(3.20) 6 = Const.,
1
(3.21) J/ (9—%IB(E)+—gsi)dx::AEL
0

Proof. It is easy to see from (2.4) and (2.12) that, for any 0 < v < 1,
d 1
k02 i

Thus the system (1.19)—(1.21) has a Lyapunov function of the form

1
(0 —vlog + Fy(e) + vFy(e) + =p> + éai) (t) dx
(3.22) 22

1
1 1)
/ (9 — v log 0+ Fo(e) + vFi(e) + 502 + Qei) (t) dz .
0

Since the orbit is compact, as proved in previous section, it follows from the standard
theory of dynamical systems that the w-limit set is connected, compact, and consists
of equilibria. Since the corresponding stationary problem admits only a finite number
of solutions (see Zhou [22], and also Luckhaus and Zheng [12], Novick-Cohen and
Zheng [16], Zheng [21]), (3.16) follows. In view of the boundary condition u|,—o =0,
we also get (3.17). Therefore, the proof is complete. |
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A NONLOCAL REGULARIZATION OF SOME OVER-DETERMINED
BOUNDARY-VALUE PROBLEMS I*

D. E. EDMUNDST AND N. I. POPIVANOV#

Abstract. Some three-dimensional analogues of the plane Darboux problems for hyperbolic
equations with degeneracy are investigated. In 1954, Protter initiated the study of such three-
dimensional problems, and it is now well known that for an infinite number of smooth right-hand sides
these problems have solutions with a strong power-type singularity on the characteristic cone. This
effect appears even for small perturbations of certain C§° right-hand sides. Using Friedrichs’ theory
of symmetric positive operators, we find and investigate a nonlocal problem which is a regularizer,
in some sense, of these ill-posed problems.

Key words. ill-posed problems, regularization methods, boundary-value problems, nonlocal
problems, degenerate hyperbolic equations
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1. Introduction. To set the scene we denote points of R? by z = (21, 72,t) and
put p = /23 + 23, p = arctan (z2 /x1). Let K : [0,00) — R be of class C'! and such
that K(0) = 0, K'(0) > 0 with K(¢) > 0, and K'(t) > 0if t > 0. Let G be the domain

G:{xeR3:O<t<d, /Ot\/md7<p<1_/0t\/md7}7

where d is the (unique) solution of the equation 2 fod v/ K(7)dr = 1. The boundary of
G is 0G = Sp U S1 U Sy, where Sy is the disc So ={z:t=0,0< p <1} and

51:{0<t<d,p=1—/0t\/m¢h},52:{o<t<d,p:/ot\/mch}.

We shall consider the equation
(1.1) Lu:= K(t) (Ugymq T Uzgas) — wer = K(2) {p_l (pup)p + p_2uwp} —uy = f,

where f is a prescribed function; S; and S are characteristics of (1.1).
Problem P. Is there a solution of (1.1) in G, which satisfies the condition

(1.2) u=0 on SyUS?
Problem P*. Is there a solution of (1.1) in G, which satisfies the condition
(1.3) u=0 on SyUSy?

Protter [28, 29] formulated these adjoint problems as multidimensional analogues
of the Darboux problem in the plane. He worked with the wave equation correspond-
ing to K(t) = 1 and also investigated (1.1) in a domain which contained G in its

*Received by the editors May 8, 1996; accepted for publication October 28, 1996. This research
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http://www.siam.org/journals/sima/29-1/30323.html
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9QH, England (mmfb7@sussex.ac.uk).
fDepartment of Mathematics and Informatics, University of Sofia, 1164 Sofia, Bulgaria (nedyu@
fmi.uni-sofia.bg).
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hyperbolic part and contained a set G’ in which (1.1) is elliptic. For equation (1.1),
which is of changing type in GUG’ U Sy, he formulated certain other problems, which
are three-dimensional analogues of a plane problem examined by Morawetz [20] and
Lax and Phillips [17].

When equation (1.1) is of changing type, Protter’s problem given in Protter [29]
was studied by Aziz and Schneider [6], Bitsadze [7], Didenko [10], Salzman and Schnei-
der [31], Papadakis [21], and others. Problems P and P* for (1.1) in the domain G were
considered by Didenko [10] in the case of the Tricomi equation (in which K(t) = t).
In the same case, after the paper of Kan Cher [8], Popivanov showed in 1986 that
the homogeneous Problem P* has infinitely many classical solutions v,, (n =4,5,...),
where

(1.4) valtopy ) = tp~" (0 —463/9)" "% (a,, cosnp + b, sinng)

and ay, b, are arbitrary constants. This corresponds to the result of Kwang-Chang
[16] for the wave equation and implies that for classical solvability of Problem P an
infinite number of conditions of the form f L v, (n =4,5,...) are necessary.

Some interesting results concerning Protter’s problems for equation (1.1), both in
changing-type domains and in G, are provided by Sorokina [32, 33]; we discuss these
in section 7. For further work on the problem (1.1), (1.2), see Aldashev [1, 2, 3], Kan
Cher [8], Popivanov and Schneider [26, 27], and the references cited in these works.

Popivanov and Schuneider [26] proceeded in another way, being interested in the
question: why does Problem P not have a classical solution when f = v, (v, as in
(1.4))? They introduced a new class of “generalized solutions” of Problem P and
proved that some kind of “generalized solution” exists and is unique but that it
is unstable and has a very strong singularity on the characteristic cone S;. More
precisely, they showed that given any ¢ € N, there is a function f, € C* (é) such
that the corresponding “generalized solution” u, € C' (é\ 52) of Problem P exists, is
unique, and satisfies the estimate

(1.5) / luglds > e, 0<e<l,
SZ,E

where S, ={z€G:p=c+ f; VEK(T)dT}.

This situation can be interpreted in terms of improperly posed (or ill-posed)
problems: we recall that these are problems which fail to have a unique global solution
which depends continuously on the data. For investigations of such problems for
partial differential equations we refer to the monographs of Payne [22], Tikhonov and
Arsenin [34], and Lavrentiev, Romanov, and Shishatskii [19]; the book by Lattes and
Lions [18] describes a regularization method for approximating solutions to ill-posed
problems. We also refer to the papers by Ames, Levine, and Payne [5], Ames [4], as
well as to the many references cited in these works; and to Tikhonov and Arsenin [34]
for numerous regularization methods.

In Problem P, the position is the following:

(i) According to the results of Popivanov and Schneider cited above, there are
infinitely many distinct right-hand sides f,, (n € N) of (1.1) for which there is a
generalized solution with a strong singularity, of at least power-type (see (1.5)).

(ii) Let ug € C§°(G) be fixed and suppose that K(¢) = ¢. Then fy := Lug €
C§°(@G) and for any right-hand side

(1.6) fns = Jfo+0fn (n eN,§#0)
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there is a generalized solution with a strong singularity (see (1.5)) and there is no
classical solution. This shows that the Problem P for the Tricomi equation is very
unstable, even though fo € C§°(G), because a small perturbation (1.6) in an infinite
number of directions has such a strong effect.

With this in mind, and having regard to the work on ill-posed problems which was
mentioned earlier, it is appropriate to consider a new problem which regularizes Prot-
ter’s problem. This new problem should be such that its solutions are free of the sin-
gularity, typified by (1.5), which appears on the characteristic cone Ss. This suggests
connecting points from G with ones on the cone Ss, and so to investigate Problems P
and P* we introduce a new, nonlocal problem. Let a be a small positive parameter.
Given any tg, pp and with C = {tg + apo/ (a + 1)} p§, let (pa (to,p) , qa (to, po)) be
the point of intersection of the curves

¢
p= / VE(T)dr, t=Cp *—ap/(a+1).
0
Problem A. Ts there a solution w(t, p, ) of the equation

(17) (LW)(t, p7 90) - p72K(t)wsﬂ<P (pa (ta P) 9 qa (tv P) 790) = f(tv pv (b)

in G which satisfies the boundary conditions (1.2), i.e., w =0 on So U S1?

Equation (1.7) is nonlocal because it involves points with coordinates (¢, p, ¢) and
(pa (t, ) s 4o (t, p) , ) . We remark here merely that in our nonlocal Problem A, in the
additional term

prK(t)wgw (pa (t7 P) e (t7 p) ’ 50)

of (1.7), the point (pa, ¢a, @) lies just on the characteristic cone Sy, where the big sin-
gularity shown by (1.5) appears in the “generalized solution” of the original Problem
P. The derivative w,, is tangential to S at that point.

Unlike [26], where the “generalized solution” belongs to a weighted space of
smooth functions, we work here in a weighted Sobolev space. Following the work
of Morawetz [20] and Lax and Phillips [17] in the two-dimensional case and Sorokina
[32] in the multidimensional case, we introduce the weighted Sobolev space

s 1/2
(1.8)  WJHG) := {w : ||w||W1(G) = </ (W +wi+7 (w2, +wl)) d:c) < oo},
2 G

where r = \/2? + 23 + t2. (The weight in Sorokina [33] is different.) In this space we
establish existence, uniqueness, and an a priori estimate of a generalized solution of
Problem A for every f € Ly(G). We also prove the infinite smoothness of the solution
with respect to . We remark that analogous results were given, without proofs, for
the Tricomi equation in G in Popivanov [25] and concerning the wave equation in
Popivanov [24].

What is the connection between Problems P and A? We note that Garabedian
[15] proved uniqueness of a classical solution of Problem P for the wave equation; an
analogous result for the equation (1.1) follows from [26]. But in both cases we do
not know whether or not the unique solution depends continuously on f. Following
Didenko [11], we investigate another problem.

Problem P, Is there a solution u of Problem P which satisfies the extra condition
Ou/0p =0 on Sy?
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We prove that its solution uy (when it exists) coincides with the solution wy of
the Problem A, i.e., uy = wy. Accordingly we can say that Problem A is a “nonlocal
regularizer” of the strongly over-determined Problems P, and P. Using the results
about Problem A we prove that the solution u; of Problem P, depends continuously
on f. For the adjoint Problem P* (with dim KerP* = oo) we find some additional
conditions, under which we prove the uniqueness of solutions in Wzl (@).

The plan of the paper is simple. Influenced by the works of Friedrichs [14],
Morawetz [20], Lax and Phillips [17], and Sorokina [32], we investigate in section 2 a
system of partial differential equations which is connected with Problem P and for-
mulate corresponding boundary-value problems. In section 3 we examine the problem
of coincidence of weak and strong solutions of these problems; sections 4, 5, and 6
are concerned with the proof of the existence, uniqueness, and smoothness (in ¢) of
the generalized solution of Problem A. The final section, section 7, deals with the
connection between Problems P, P*, and the nonlocal Problem A. It is shown that,
under appropriate conditions on f, the solutions of Problem P coincide with those of
Problem A.

2. Investigation of a related system of equations. Given a vector-valued
function @ = (uy,us,us) we introduce the formal notation

(2.1) up = (T1ur + Tou2)/ p, Uy = TiUp — Toug,
and the derivatives 8% = ‘”—pla%l + %28%27 a@ = 8%2 *‘TCQ%. We consider the system
K 0 K Ou, Ous
D op (pup) + 2o ot s
(2.2) gl (e _Ous) (0w Oup)|_
p\ Ot Op op Oy
Ou, _ Dus _
ot op

where a = a(t, p, v) is a function to be chosen later. In matrix form this becomes

R 0 0 0 ;
2.3 Lot=(A'—+A*— + A= |a=
23) ot ( ooy "N oy T )T
where fi = (f,0,0). We shall see that the equation (1.1) and the system (2.3) are
not equivalent. In addition, for (2.3) we have a new characteristic, Sp; thus all the
boundary surfaces Sy, S1, and Se are characteristics. To use the Friedrichs [14] theory
of positive systems we reduce (2.3) to symmetric form by left multiplication by

—x1  xz3/p —Kaxi/p
(2.4) A= —xo —x1/p —Kaxs/p
a 0 p

This gives the symmetric system
R —Kr1 —Kzo Ka 9
Lu = —K.’EQ K(El 0 87 +
Ka 0 —x1 1 0 Ka —x9
—Ka 0 1 o4 f1
+ 0 —Ka z | =1 fo
ot
T T2 —a f;

K.CCQ 7K£171 0 812

—Kz, —Kzo Ka —_—
8%2

I
»

3
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where fi = —x1f, fo = —x2f, f3 = af. We observe that det A = p? — Ka?; this
leads us to impose the following condition on the function a : p —a/K(t) > 0 in G.
Following the notation of Friedrichs we have

. 1
2.6 @, La = (4, >0 +7/ - Buds;
(2.6) ( >L2<G) (i, 50) o) + 5 [ 06

here the boundary matrix § is given by §(z) = Z?:l n;(z)A(x) A’ (x), where n(z) =
(n1(z),n2(x),n3(x)) is the unit exterior normal vector at z € G, and the matrix s
is defined by

(Ka), 0 —Kag,
(2.7) = 0 (Ka), —Kag,
—Ka,, —Kay, 2+4+a

In the paper Friedrichs [14], the matrix corresponding to our matrix s is positive in

G. To fit in with this we work in a suitably weighted Sobolev space and choose
(2.8) a(t,p,¢) =a(p+1t) in G,

where d > 0 is a parameter, as in Sorokina [32]. With this choice we have

(2.9) -3t > aK'(t)(p+t) (uf +u3) + (2 + a — aK)uj.

This leads us to impose the following two conditions on « :
(E1) p—alp+t)/K(t) >0in G\ {(0,0,0)},
(E2) aK(d) <2+ a.
Remark. It easy to see that near the point (0, 0,0) the condition (E1) is equivalent
to 0 < « < 2/3. Note that (E1) and (E2) are satisfied for every sufficiently small a > 0.
For example, if K (t) = ¢, then they hold if 0 < a < 2/ (3 + V).
According to the Friedrichs theory, the boundary conditions

r1u1 + zous = 0 on Sy, T1ug — Toup = 0 on So;
(2.10)

Jf?(xlul + xoug) — pug = 0 on Sy
are admissible for L. The adjoint boundary conditions are

(2.11) x1v1 + Tove — avy = 0 on Sy, Tov1 — x1v2 = 0 on Sy;
' VK (x1v1 4+ 22v2) + pvg = 0 on Sa,
and these are admissible for the adjoint operator L. Following the work of Morawetz

[20] and Lax and Phillips [17] in the two-dimensional case and Sorokina [32] in the
multidimensional case, we introduce the weighted Lebesgue spaces

H*(G) := {ﬁ: )™ = (/G [r (uf + u3) + uj) dx>1/2 < oo} :

H.(G) = {u foll = ([ I (2 +4) + o3 dw)m < oo}7

where r = /p? + t2. By (-, -) we shall mean the inner product in L2(G), and ||-|| will
stand for the corresponding norm.
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DEFINITION 2.1. A function @ € H.(G) is said to be a weak solution of the
problem (2.5), (2.10) if

(2.13) (uLv) - (f, v)

for every v € C! (@) which satisfies the adjoint boundary conditions (2.11) and van-
ishes in some neighborhood of the point (0,0,0).

DEFINITION 2.2. A function G € H.(G) is called a strong solution of the problem
(2.5), (2.10) if, and only if, there are functions i, € C* (G) (m € N) each of which
satisfies the boundary conditions (2.10) and vanishes in some neighborhood of (0,0, 0)
such that

*

(2.14) |G, — 4|, — 0 and Hﬁﬁm—f — 0 as m — oo.

From the Friedrichs theory and (2.9), standard procedures now show that the
following theorem holds.
THEOREM 2.3. Let o > 0 be so small that (E1) and (E2) hold. Then for any

f e H*(Q), there exists a weak solution @ € H,(G) of the problem (2.5), (2.10). If
there is a strong solution, it is unique and satisfies the a priori estimate

lall, < Ca

i

where Cy, is a constant which does not depend on .

Every strong solution of (2.5), (2.10) is a weak solution. However, we also have
the following theorem.

THEOREM 2.4. Every weak solution is a strong solution.

From this result (to be proved in the next section) and Theorem 2.3 it follows
that given any f € H*(G), there are a unique weak solution and a unique strong
solution, which coincide.

3. Proof of Theorem 2.4.

Proof. By partition of the unity argument it is enough to show that if the support
of a weak solution 4 is concentrated in a small neighborhood of an arbitrary point of
G, then it is a strong solution; that is, there are functions 4, € C* (é) satisfying the
conditions of Definition 2.2. Far from (0,0, 0), the Lo-norm and the norms on H*(G)
and H,(G) are equivalent. The point (0,0, 0) requires separate treatment. For each
other point in G we use the method of mollifiers developed by Friedrichs [13], Lax and
Phillips [17], Peyser [23], Rauch [30], and others. After suitable change of variables
we look for an integral operator R., which depends on a parameter € = (e1,¢€9,€3),
such that R.4 satisfies the boundary conditions (2.10), and with an adjoint R} such
that R0 satisfies the adjoint boundary conditions (2.11) for every pair of functions
u,v € Lo(G) with support in a small neighborhood of the point considered. The most
difficult problem usually is to prove |LR.@ — f|| — 0 when & — 0 in a special way.
Since (LR*)*i = R.f, we must show that

(3.1) | (ﬁ*R;)* i— LR

‘—>0 as ¢ —0.
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If the kernel k. of the integral operator R. is k.(x,y) = k-(x — y), then we have the
integral representation

* . 3 _ _
(E°R2) ) - LR-ily) = /G S 2 (A kly — )~ kel — DA (2]
(3.2) =177
— [By)k:(y — z) — ke(y — 2)B(2)] p a(z)dz.

We prove here local coincidence only in the case when the support of the solution
lies in a small neighborhood of some point of Sy NS7. For the other cases we refer to
Lax and Phillips [17], Peyser [23], Rauch [30], and Popivanov [24] for indications of
how to proceed.

Let Py € SpNS; and suppose that u € Lo (G) is a weak solution x of the boundary
value problem (2.5), (2.10) with u = 0 in some neighborhood of S;. Because the
surface Sy is not C? near Py, we work with the variables (¢, p, ). Note that the
system (2.5) in variables

Up x1/p  x2/p O Uy
(3.3) u=| —ptu, | =Fa:=| x2/p —z1/p O Us
us 0 0 1 us
becomes
A R A —Ka 0 p 9
Lyu:=FLt:=F LFiu := 0 —Ka 0 —
ot
p 0 —a
(3.4)
—-Kp 0 Ka o 9 N
+ 0 Kp O 6—+A§a—+B2 u=f
Ka 0 —p P ¥

and that the boundary conditions (2.10) become
(35) \/?ﬂl — 53 =0on Sl, ﬂl =0on S().

To diagonalize the matrix A’ we multiply the system (3.4) by the matrix F, € C!
(supp w), where

a 0 p
1 Ka? — p?
. = ——— =T P
(3.6) 2= S Ka? -
p 0 Ka
This gives the system
R R 1 0 o
Lgﬁ = FQLlﬂ = 0 K(t) 0 a
0 0 1
(3.7)
0 0 -1 5 5
Kp ~ 7
_F . A“"— B — .
+1 0 aoap+28+2“fl’
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the boundary conditions (3.5) remain the same. The new adjoint conditions are
(38) 52 =0on Sl, 173 =0 on S().

We define approximating functions by
(3.9) Reu(y) = /D ke(y — 2)u(2)dz  (y = (t.p,9), 2= (1.5,9))

in the domain D = {(t,p,¢) : 2 < p < 1~ [ VE(T)dr,es < ¢ < cat}, where
0 <ecy—c3<2m asusual j € C°(R),j(s) =0for [s|>1, [j(s)ds=1, and

1 t
(5)ames (5 -2) (£ +2).
£1€9€3 €3 €1 €2
t t
i(5+2)i(G-)a (52 (500}
€1 E9 €1 €2

where 0 < 1 < €9 < e3 and F is an appropriate constant.

The functions (3.9) satisfy the boundary conditions (3.5) on ¢ = 0, while the
functions R¥v satisfy the adjoint boundary conditions (3.8) on ¢t = 0. On the surface Sy
we have p =1 —f(f VK(7)dr and if E > 2+434/K(d), then R.u satisfies the boundary
condition (3.5) on Sy and R*v the adjoint conditions (3.8) on Si. Then (L*R*)*u =
Rsfl and we have to prove only the convergence (3.1). Using the representation (3.2)
we must deal with the problems of convergence of the terms involving (a) 9/0t, (b)
9/9p, (c) 9/9¢, (d) Bo.

It is easy to handle problem (a) because after the transformation (3.6), A* depends
only on ¢, and not on p or ¢; we have estimates such as

ks(y) = diag{Jl, JQ, Jg} =
(3.10)

(3.11) |K(t) — K (¢)| < M|t —% < 3Me; on suppke.

The most interesting is problem (b), that is, to establish the convergence in Lo (D)
as € — 0 of the expression

(3.12) I, = /D % {AP(2)k:(y — 2) — ke(y — 2) AP (y) } u(z)dz.

Note that A?(2)K.(y — z) — K.(y — 2)AP(y) =

0 0 J1—J3

B 0 {a1 (f, ﬁ) — aq (t, p)} Jo 0 ,
K (7) Js — K(t)Jy 0 0

where a1 (t, p) = pK(t)/a(t, p). We remark that S; is a characteristic surface and that

we have some components which are simultaneously “free” for both the boundary and

the adjoint boundary conditions. This fact is crucial and explains why we can choose

the kernel of the mollifier in such a way that J; and J3 depend in the same way on p.
Note that for any constant ¢ and any w € Lo(D) with w = 0 in R3\D,

t—1

/le( +c>w(t,p,<p)dt—w(t7/)790)

€1 €1

— 0
L2 (D)

(3.13) ‘
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as €1 — 0. In our case, we have

) [ {i(S )i (2 -2)]
(L) (228 e

as €1 — 0, g2 and e3 being fixed. In a similar way we find, using (3.13), that

Ié =

(3.14)

— 0
Lo (D)

(e162e3) ™" /D {K (1) j (t;t + 2) — K(t)j (t;t - 2)}
J (pép +E) j (‘T) 1 (2)dz

as €1 — 0, g2 and e3 being fixed. We also have that

(816253)_1/17 (% {[al(t,P) —ay(t,p)]j (pgzp —E)}

j (t;t + 2) j (“’;”) T (2)dz

"o __
I =

(3.15)

— 0
Lo (D)

"o.__
I =

(3.16)

— 0
Lo (D)

ase; — 0, 2 — 0 with 0 < e; < €9, and with e3 being fixed, since
(317) a1 (1.7) —aa(t,p)] 3" < MA{Jt —F| +1p—Dl} ey < Mi(erey ' +1).

This completes the discussion of problem (b). Problems (c) and (d), involving A%
and By (see (3.2), (3.7)), are handled in a standard way. The investigation in a
neighborhood of a point from Sy N Sy is finished. To deal with the point (0,0, 0) we
follow the Lax—Phillips scheme [17] for the two-dimensional problem, but with some
changes. We use a cut-off function ¢ € C°(R), with ¢)(s) =0 for s < 1 and ¢(s) =1

for s > 2, and for each m € N define ¢,,, € C® (G) by ¥ (t, p) = ¢ (m (p +t3/2)).
Note that the function ., := ¥, 0 is a weak solution of the system

L= fr = tmf+m (gi)lA1 + %AQ + z\/fAB’) )’ (m (p+t3/2)) .

To finish the proof of Theorem 2.4 we need the next lemma, which follows in a standard
way, using the fact that on suppt’, we have p < 2/m and t < 2/m?/3.
LEMMA 3.1. Let & € H.(G) and f € H*(G). Then

*
— 0 as m — oo.

(3.18) Hfm ~f

The proof of Theorem 2.4 is complete. O

THEOREM 3.2. Let f € H*(G) and suppose that @ € H.(G) is a weak solution
of the boundary-value problem (2.5), (2.10). Then it is a strong solution, it is unique,
and it satisfies the a priori estimate

*

(3.19) lall, < Co||f
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Proof. We wish to use Theorems 2.3 and 2.4. For a weak solution @ from Theorem
2.3 and for each m € N define functions ,, = ¥,,u as above. We know that ,, =0
inGn{p+ t3/2 < m~'} . From the results above it follows that far from (0, 0,0) every
weak solution is a strong solution. But 4, satisfies this condition. In view of this and
Lemma 3.1 the proof is complete. 0

4. The nonlocal problem: Existence of a generalized solution. Here we
deal with Problem A. We recall that we consider the curve t = Cp~*—ap/(a+1), a be-
ing a small positive parameter, and that this curve contains the point (¢g, pg) provided
that C' = {to+apo/(a+1)}p§; under this condition we denote by (pa (to, po); ¢a(to, Po))
the common point of the curve and the curve p = f(f K (7)dr (for the details see
section 7).

DEFINITION 4.1. A function w(t, p, ) is called a generalized solution of Problem

N w w — UJl
A if (a) w, 22, r‘g—p € Ly(G); (b) /rp 1%7 € Lo(QG), where
(4.1) WH(t, p,p) = w(t, p,0) = W (Pa (8, 0)s Ga (tp), )

(c) w =0 on Sy U Sy; (d) for any function v € C* := {v € CY(G) : v =0 on
So U Sa, and in some neighborhood of (0,0,0)}, the equality

Ow Ov dwdv  K(t) dw' dv
4. gwov owov dw' dv _

holds.

Remark. The trace in (4.1) exists because pa, ¢o € C*(G) (see section 7).

THEOREM 4.2. Suppose that the parameter o > 0 is so small that conditions (E1)
and (E2) are satisfied. Then for any f € La(QG), there is a generalized solution of
Problem A.

Proof. Let f € Ly(Q); then f = (—a1f, —xaf,a(p +t)f) € H*(G). By Theorem
2.3, there exists a weak solution @& = (ui,us,u3) € H.(G) of the problem (2.5),
(2.10); by Theorem 2.4, it is a strong solution. Hence there are functions 4, =
(U1, Um2, Um3z) € C* (@) (m € N) such that

T1Um1 + Tatma = 0 on So, VK (21Um1 + T2Um2) — pums = 0 on Sy,

4.3
(4.3) T1Uma — TolUm1 = 0 on Sa, i, = 0 in a neighborhood of (0,0, 0)
and
(4.4) (- Ho,’ﬁamffH 0 asm — 0.
Recalling that L = ALy we put Ump = (T1Um1 + ToUm2)/ P Ump = T1Um2 —
T2Um1,

7 du ) 8u7 ou
Wy = Ll = K(t) ( 8:1 + 89622) - 8;”37
1

ou ou ou ou
(45) w2 = (L/K(t)) L p ( ot dp ) ( ap Op ) ’

ou ou 3
g = Ly, = Jtme  Otm3
Wm3 = Lot ot ap
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Since det A = p? — a?K > ¢ (p*> 4+ t*) in G, ¢ > 0, the second part of (4.4) gives

1/3
(4.6) | +2) s = D, = 0wl = 0,
3y 1/2
4.7 H 2+t‘31 wm’ — 0
(4.7) (P ) 3 (@)
Now we define functions w,, € C* (@) by
t
(4.8) ot ) = [ na(rpp) dr - (meN),
0

In view of (4.4), there is a function w € Ly(G) such that

(4.9) lwm — wl|| — 0, a;—;n—u;g — 0 as m — o0,

and w; = uz € Lo(G). From the boundary conditions (2.10) and from (4.7), for every
0 > 0 we obtain

— 0 as m — o0,

(4.10) ‘ — — (z1ug + z2u2)/ p
L2(Gs)

where G is the set of all those points of G with p > 6. Hence

0 0
& = (xlul +$2U2)/p, \/’Ffw S LQ(G)

Jdp dp
The function w satisfies the required boundary conditions (1.2) on Sp U S;. Thus w
satisfies conditions (a) and (c) of Definition 4.1.
We can now turn to the derivative with respect to ¢. Put

Owm, Owm,

411 = — — —_ —
( ) Qm 8@ um‘P (950

— (T1Um2 — ToUm1) -

Use of the equations in system (2.2) and notation (4.5) shows that @, satisfies

adQ, 0Qmnm a 0 /t
412) ——F— — —— = —Wma+ —= | wma(T,p,0)dT = —Gn(t, p, ).
(4.12) > ot 99 ) ( ) (t, p, )
To integrate (4.12) we observe that a = a(p + t), make the change of variables & =
(t+ ap/(a+1))p*, s = p, and write

(4.13 Q)= Qn (87— Lpssi).

with similar definition for G,,. From (4.12) we have

We choose s (&) to be the p-coordinate of the point of intersection of Sz and the curve
5 = é-(% Since Emtp(ﬁv S(g)v SD) = 03 by (43)7 then

S

(4.15) QnE5.0) ~ 226, (0)0) = | Cltoor )
® 5(6)
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and we finally have

0w, o a N a
Qm(tupuSD) - a(p(tp —|—T+1p +17 S(tp _’_mp +1>,90)
(4.16) X
:/ G,,do.
s(tpet z9g pot)
But this means that
Ow!l p__
(4.17) %(;T — Uy = / Gm(f,S,gD)ds
th

according to the notation (4.1). The integral

P P «
G P o «
G, gasv(p ds :/ Gm ( - (t+ P) - S,Sa<,0) ds
/q&(tﬁp) ol ) daltn) <S> a+1 a+1

can be split into two parts, by (4.12). For these we have the following estimates: for

every 6 > 0,
P p ot
/wdes //wmgdﬂis
q Ga /0

as m — 00; here G? is the set of all those points of G with ¢ > 8. To prove this we need
the properties of w2 and w,,3 given by (4.6) and (4.7), together with the fact that
if some characteristic of the first-order partial differential equation (4.12) starts from
a point on Sy far from (0,0,0), then it will remain far from (0,0,0) at all times, so
we have some uniformity. It should also be observed that the weight ¢ in the estimate
(4.6) for w2 causes no difficulty in our case, because starting from a point in G we
integrate along a curve through this point which goes to Sy but remains away from
t = 0. These considerations enable us to prove that for all ¢ € C§°(G),
0
(4.19) - (wﬂ ai) = (up,¥),

— 0

(4.18)

— 0, ‘

)

L2(G?) L2(G?)

that is, %—“j; = (—zoui+w1U2), %% € Ly(G), and the proof that w satisfies condition

(b) of Definition 4.1 is complete. B
As for condition (d), let v € C1(G) be such that g—:; € CY(G) and v vanishes on

Sy and in some neighborhood of Sy. Then from (4.5), (4.6), and (4.7) it follows that
Bumg 8um3

auml
(4.20) (K 01 + K 0s ot ,v)—>(f,v) as m — 0.

Integrating by parts in view of the boundary conditions (4.3) and with the aid of
the representations of derivatives of wy,, it now follows that (4.2) holds, when v is
restricted as stated above. That condition (d) is fulfilled for the given class of functions
v results from a density argument. The proof of Theorem 4.2 is complete. 0

5. Uniqueness of the generalized solution.
THEOREM 5.1. Let f € Lao(G) and suppose that the positive parameter o is so
small that it satisfies conditions (E1) and (E2). Then Problem A has at most one
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generalized solution, and there is a constant C such that if w is a generalized solution
it satisfies the a priori estimate

VT ow!
5.1 ol + 5 | + 752 |+ <cifl,
p Op |
where we recall that ||-|| stands for ||| 12 (-
Proof. Suppose that w is a generalized solution of Problem A. Put
u—a—w u—a—w u—a—bul Up = T1Up t — Toupp 2
(5.2) P op BT o T g T TP 2l

-1 -2
Uy = TaUpp ~ + T1UppP

Then us, v/Tu1, v/rus € La(G). We claim that the following result holds.

LEMMA 5.2. The function 4 = (uy,us,us) is a weak solution of problem (2.5),
(2.10) for the function f = (—x1f, —xof, alp +1t)f) € H*(Q).

Assuming this for the moment, it follows from Theorem 3.2 that @ is a strong
solution of (2.5), (2.10), that it is unique, and that it satisfies the inequality (2.5),
which in the notation (5.2) means

lwell + V7w, || + Ve 'wi]| < C -

Since w =0 on Sy and w = fg wi (7, p, p)dr, the a priori estimate (5.1) follows.

To conclude the proof of Theorem 5.1 we establish Lemma 5.2. From (4.2) it
follows that if w; € C*, i.e., w1 € CY(G), wy is zero on SyU Sy and in a neighborhood
of (0,0,0), then (with (-,-) denoting the inner product in Ls(G))

(53) (U3, 8;;1) (Kul,(a,;;}ll) (KUQ, gﬂ;) (f,’uh)

If ws € C? (6) is zero on Sy and in a neighborhood of (0,0, 0), then plainly

(5.4) <up, 8;‘?) - <u3, %a% (pw3)> = 0.

If wy € C? (é) is zero on S7 and in a neighborhood of Sy, then we claim that

10 1 0 0
(5.5) I(w):= <CLU3 — PUp, 29 (Kw2)> - (pu<p7 ot (aKws) — op (png)) =0.

To verify this, observe that we may approximate the function w(t, p,¢) by smooth
functions wy, (¢, p, ) in W3 (suppwz). Using the notation w}, from (4.1) we see that
w}, = 0 on Sy, by definition of the functions p, and g,. Then I (wy,) — I(w) as
m — oo; we see that I (w,,) = 0. This follows from the boundary conditions and
because the functions w, (pa(t, p), ¢a(t, p), ¢) depend actually only on ¢ and £ =

!
tp® + —— oy 1P p®T1. Tt is easy to check in that case that

(5:6) {5 = 24 01 bom Gt 40t ) ) =0

From all this (5.5) follows. From (5.3), (5.4), (5.5), and the representation of the
operator Ly we have

(5.7) (. Lyo) = (fr.0) = (fw1)
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for every function w = (wy, wsy, ws) such that

(5.5) { weC? (@) , = 0 in a neighborhood of (0,0, 0),

wy; = 0 on Sy U Se,wy =0 on Sy,ws =0 on Ss.
Recalling that L= ALy, we are led to solve the equation w = A*v. This gives

wp, = — (CEl’Ul —+ XTovo — (11}3), Wy = (1’2’01 — xlvz)/p,
(5.9) o

ws = pvg — Ka(x1v1 + z2v9)p
It is easy to see that for every & € C? (G) which satisfies conditions (2.11) and the
additional conditions

(510) T1V1 + ToUg = 0, V3 = 0 on SQ,

the corresponding function @ given by (5.9) satisfies (5.8), and so the equality
(ﬁ7£*®> = (f? @) ) f: (_xlfa _fov af)

holds for all such functions 0. Some density arguments remove the additional condi-
tions (5.10) and thus show that @ is a weak solution of problem (2.5), (2.10).
The proof of Lemma 5.2 is complete. ]

6. Smoothness of the generalized solution. The matter investigated here is
the smoothness with respect to ¢ of the generalized solution of the nonlocal Problem
A. We begin with the following lemma.

LEMMA 6.1. Suppose that the function w satisfies all conditions from Definition
4.1, except that the equality (4.2) holds only for all functions v € C§°(G). Then w is
a generalized solution of Problem A.

We omit this proof, because we shall not use this fact here.

THEOREM 6.2. Suppose that the positive parameter « satisfies (E1) and (E2), and

let f € La(QG) be such that g%{: € Lao(G) fork=1,...,L for some £ € N. Then there
is a unique generalized solution w of Problem A for which

v~ ot lw 'ty

and
S okw 1w 91w Lok f

(6.2) ’“H +HZ +H\/F£ <Co ) |l5% .
109 sy 101098 I, 9p0p" || () pr 8 K% 2l PR

Proof. First suppose that g € Ly(G) is such that dg/0¢p € Lo(G). Let u be a
generalized solution of Problem A, with f = 0g/0¢; Theorem 4.2 ensures that such a
solution exists. Then u, du/0t, \/rOu/dp, \/rp~Lou /0p € La(G) ,u =0 on Sy U Sy,
and

(63) (ut’vt) - (Kupvvp) - (Kp72ui>vvtp) = (ngy) = (gvytp)

for all v € C*. We have also in each set Gs = GN{p > §} an approximation sequence
{wm} C C*(Gs), as in Theorem 4.2.
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Put uy (¢, p,p) = fOQTr u(t, p, p)dp; then we have

Ouy  [*" Ou duy /2” du Ouy
0

4 o Zpe)dp el = [ it p,p)dp, 22 =0,
Rl B L R A .

Moreover, u; = 0 on Sy U S;. Let v; € C* be independent of . Then from (6.3) we
have

(65) / <6u1 Ovy K@ul ovy K Oul vy
A

o X o ‘pza@a@)pdp‘“‘“’

where A = {(t,p) : t > 0, [{ /E(T)dr < p <1— [ /K (7)dr}.

Given v € C*, define v; = fo% vdep; then (6.5) holds for this v; and we have

Ouq Ov Ou; Ov K dul dv B
(6.6) /G(at o Koy o, 2opap) T

for all v € C*. This shows that u; is a generalized solution of Problem A with
f = 0. From the uniqueness part of Theorem 5.1 we have u; = 0 in G, that is,

JoTult, p.g)dg = 0 for (t,p) € A.
Define

(6.7) y(t, . 0) = /0 "t py A,

Since u; = 0 in G, this function has a generalized p-derivative g—z = u, and by (6.3),

(6.8) (ytvvapt) - (Kypavapp) - (Kp72yinvtptp) = (gvvgo)

for all v € C* such that v, € C' (G) . Note that if g € Lo(G), there is a generalized
solution w of Problem A with f = g; for this solution (6.8) is also satisfied. With
z = w — y we then have

(6.9) (Ztvth) - (KZP7U<PP) - (Kpizz;vvww) =0

for the same functions v. If 1) € C? (@) N C*, then

27

(6.10) ve(t, p, ) = w(t,p,w)—% ; U(t, p,p)de

can be substituted in (6.9), giving

1 2m 1 2m
(=g [7e), ) = (=g o0, )
1 27 1
—92 o
_<Kp (z—%/o zd@)w,wV,) =0.

(6.11)

It follows from Theorem 5.1 that

1 2
(6.12) z(t, p, ) — —/ z(t, p,p)dp =0 in G,
2T 0
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that is, w, = u in G. The properties of the generalized solutions w and u now lead to
the conclusion of the theorem, once the estimate

(6.13) [Vrp™ we|| < Clifoll
has been established. To do this we use the fact that w = 0 in Sy and the following
lemma.

LEMMA 6.3. For every w € Lo(G),

t
Hﬁp‘l / w(r, py @) < C ]

The proof of Theorem 6.2 is complete. O

7. Local and nonlocal problems, and their connection. We investigate
here the connection between solutions of Problem P and those of Problem A.

DEFINITION 7.1. A functionu € W3 (G) is called a generalized solution of Problem
P if, and only if, u =0 on SoU Sy and

(7.1) /G {upw, — K(t)upv, — K(t)p *upv, — fv}de =0

holds for all v € C*.

We shall also consider the following problem.

Problem P, Is there a generalized solution of Problem P which satisfies the extra
condition

(7.2) u, = 0 on Sy in a weak sense,

that is, [ wv, ds =0 for all v € C§° (S2)?

For the Tricomi equation, Problem P, was formulated by Didenko [11].

Denote by H the set of all f € Ly(G) for which there exists a generalized solution
uy of Problem P; denote by H,, the subspace of functions f € H for which the solution
uy satisfies (7.2). We know that in the case of the Tricomi equation, where K (t) = t,

(7.3) dim (L2(G)/H) = o0

since all the functions v,, given in (1.4) are orthogonal to H.

Remark. Sorokina [33] studied a variant of Problem P,: she called a function
u € W3 (G) a “generalized solution” of this problem if, and only if, u is a solution
of equation (1.1) in the sense of distributions (that is, (7.1) holds for every v €
C3(G)), v =0 on Sp,u, = 0 on Sy, and u, = 0 on S; in a weak sense, where
uy = K(nqug, + notly,) — gy, is the conormal derivative. Theorem 2 of Sorokina
[33] states that given any f € Lo(G), there is a “generalized solution” of the problem,
and any such solution is a strong solution. This result seems to us to be incorrect:
the problem as formulated in Sorokina [33] appears to be strongly over determined
(compare with (7.3) and Lemma 6.1).

We shall examine the uniqueness and continuous dependence on the data of so-
lutions of Problem P,. The nonlocal Problem A will give some information about
this.

THEOREM 7.2. Let u € W3 (G) be a generalized solution of Problem P,. Then it
is also a generalized solution of Problem A and so is unique and satisfies the a priori
estimate

(7.4) lulls ey < ClIA L6 -
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Proof. Let v € C? (G) be zero in some neighborhoods of Sy N Sz, Sp N Sy, and
(0,0,0); suppose that a > 0 is so small that conditions (E1) and (E2) hold. We
investigate the nonlocal term in the integral equality (4.2):

I(v) == /G K(t)p~u (pa(t, p); 4a(t; p), @) veu(t, p, 0)pdpdtdy

_ /S ()i

for some w € C} (S2) , obtained by integration of v over the lines t = Cp~% —ap/(a+
1). More precisely, let (¢o, po, ) be a point in the domain G. This lies on the curve
with equation ¢t = Cp~® — ap/(a + 1), where C' = (to + apo/(a + 1))p§. This curve

. t . .
intersects p = [ /K (7)d7 in a point (pa(to, po), da(to, po), @) , where t = pq (to, po)
is a solution of the equation

Fy=t| [ t Wd] 2 t VRG] g+ 1)

a+1

this exists because F(¢) > 0 for ¢ > 0 and F(0) = 0. Then

Pa (to,p0)
Pa(to,po) = F~" (top§ + apd™ /(@ + 1)), qalto,po) = / VK (T)dr.
0

We note here that 0 < p(to, po) < d; more precisely, the curve t = Cp~® —

ap/(a+1) crosses every characteristic p = 3 — fot /K (7)dr at least once, because at
the common point (¢g, pg) we have

i (po) = —alto, po)/ po > —1 / VK (ko) = th(po) ,

in view of condition (E1).

Let us denote by (¢,11(t)) and (t,12(t)) , ¥1(t) < ¥2(t), the points of intersection
of the curve t = Cp~* — ap/(a + 1) and dG. We note here that 1, € C1(0,d), while
Py € CH((0,d)\{t'}), where (') = 1. Then the function w(t, ) in (7.5) will be
given by

F’(t) Pa(t)
VI E®) S

In view of condition (7.2) it follows that for every function v such that w €
C§° (S2), we have I(v) = 0. Thus I(v) = 0 for every v € C*. Comparison of (4.2) and
(7.1) now shows that u is a generalized solution of Problem A. The rest of the proof
now follows from Theorem 5.1. O

COROLLARY 7.3. If f € H,, then a generalized solution uy of Problem P, ewists
and coincides with the generalized solution wy of Problem A.

Theorems 6.2 and 7.2 also give information about the smoothness, with respect
to ¢, of generalized solutions of Problem P.,.

COROLLARY 7.4. If f € H, and 0¥ f/0¢* € Lo(G) for k = 0,...,1, then the
conclusions of Theorem 6.2 hold for a generalized solution uy of Problem P.

Of course, for f € H\H, a generalized solution of Problem P need not coincide
with the generalized solution wy of Problem A; and if f € Lo(G)\H, there is no

@6 wlte) (Kvg) (F(t)p™ = ap/(a+1),p,0) p~ '~ dp.
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generalized solution of Problem P. Thus the nonlocal Problem A (for which Theorem
6.2 holds, ensuring uniqueness, existence, and differentiability with respect to ) is,
so to speak, a “regular continuation” of the strongly over determined Problem P,
when f € Ly(G)\H,. In this sense, we may regard Problem A to be a “nonlocal
regularization” of Problems P and P,. All this suggests the following procedure for
tackling the ill-posed Problem P. For the given function f € Lo(G) we first try to
solve the nonlocal Problem A. To do that, it is possible first to find the solution @ =
(u1,ug,us3) of the local problem (2.5), (2.10) for the corresponding system of partial
differential equations and then to find a solution wy of Problem A by integration of
us(t, p,¢). Then we check the value of the derivative (wf),, on the characteristic
cone S> and if that value is very small, we might conclude that the solution u of the
Problem P exists and is very close to the function w; already found.

Remark. Note that Eskin and Vishik solved the strongly overdetermined Cauchy
problem for the Poisson equation A,u = f (see Eskin [12]) by changing the equation
to

~

Apu+Gv) = f,

where G(v) is some potential with unknown density v which depends only on (n —
1) variables. They established existence and uniqueness results about the pair of
functions (u,v); the addition of the potential G(v) removed the overdeterminacy. In
our approach we change equation (1.1) to (1.7), but our additional term depends only
on the function w, not on some new function.

We now return to Problem P*, the homogeneous form of which has an infinite
number of classical solutions. By introduction of additional conditions we seek to
eliminate this nonuniqueness, and formulate the following nonlocal problem.

Problem P*. Ts there a solution of the equation

(7.7) K(t) (Vgyzy + Vggzy) — Vet =g in G

which satisfies the boundary condition (1.3) and the additional nonlocal condition

b Pa(t)
78 2L / (Ko)(r(t.p)opr0)p " Cdp =0 (0< o <2m,0<t<d),
)

where 7(¢,p) = F(t)p~* — ap/(a+1) (see (7.5) and (7.6) above)? The integration is
over the intersection of G and the curve (¢ + aLH p)p* = constant, and it is assumed
that the parameter o (> 0) satisfied conditions (E1) and (E2).

We must, of course, make precise the notion of a solution with which we shall be
dealing. This leads to the following definition.

DEFINITION 7.5. A functionv € W3 (G) is called a generalized solution of Problem
P* if (i) v = 0 on Sy U Sy; (ii) for every u € Cp, == {u € C* (G) :u=0o0nSyUS;
and in some neighborhood of (0,0,0)}, we have

(7.9) / {upvy — K(t)u,v, — K(t)p *upv, — ug ) dz = 0;
G

(iii) for all u € C§° (S2),

P2 (t)
(7.10) /S up(t, ¢) {/ (Kv)(7(t,p), p, so)p‘l‘adp} dtdp = 0.

1 (t)
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For some functions, Problem P* coincides with the problem adjoint to the nonlocal
Problem A. This is the content of the following theorem.

THEOREM 7.6. A function v € W%(G) is a generalized solution of Problem P* if,
and only if, v =0 on Sy U Sy and

(7.11)/G {upwy — K(t)upv, — K(t)p~*[ugp — up (palt, p), qalt, p), ©)Jv, — ugh dz =0

for all u € Cp.

Proof. Suppose that v satisfies (7.11), and let u € Cf, be zero in some neighbor-
hood of S1 N Sy. Let ¢ € C (R) be such that ¥(s) =0if s <1, ¢(s) =1if s > 2,
and for each m € N define

U (t, p) =V (m (p—/ot \/de» ;

Ymu is zero in some neighborhood of Ss. Use of ¢,,,u in (7.11) gives

(wmtvt - K¢mpvp7 u) + (wmutv Ut) - (meU/pa Up)

7.12
( ) — (ﬂ)mp*QKu(p, Mp) = (1/)mU7g)

and by Hardy’s inequality we see that the first term converges to zero. From this and
(7.12) it follows that (7.9) holds, from which and (7.11) we obtain (7.10). Thus v is
a generalized solution of Problem P*. The converse is immediate. |

THEOREM 7.7. Problem P* has at most one generalized solution.

Proof. By Theorem 7.6, it is enough to prove that there is at most one generalized
solution of the problem adjoint to Problem A. To do this, suppose that v € W3 (G),
v =0 on Sy U Sy, and satisfies (7.11) with g = 0. Since v € L2(G) and /rp~lv, €
Ly(G), by Theorem 6.2 there is a generalized solution w of Problem A with f = v,
such that w € W3 (@), 2 at&p € Ly (@), f@p@(p € Ly(G), and

Ow 1
(7.13) / (wtwt — Kwyw, — Kp_Q%ww vw) dx =0
G

for every w € C*.
We wish to put w = v in (7.13). To justify this we use the function 3 employed
in the proof of Theorem 7.6. Then (7.13) holds with w = t(pm)v, and so

28w

/ (wtvt — Kw,v, — Kp~ 55 V¢ ~ v2> pdx + m/ Ky’ (mp)w,vdz = 0.
G ¥ G

As m — o0, the second integral above converges to zero, since |K(t)| < Ct < Cyp*/?
in G, and

mp wp’[}dl‘ < C “pr|‘L2(G ||U||L2(Gm) - 07

where G,,, = GN {(t,p, @) :p<2m~'}. Thus (7.11) with g = 0 and u = w and (7.13)
with w = v show that v = 0 in G, and the proof is complete. O

We conjecture that for any g € W21 (G), there exists some kind of generalized
solution of the Problem P*, possibly not belonging to W3 (G). We feel that this should
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follow from the uniqueness theorem relating to the general solution of the Problem
A. Here we prove a weaker result.

THEOREM 7.8. For every function g € Lo(G) there exists a weak solution of
Problem A*, that is, a function v € Ly(G) for which the equality

(7.14) (Lw — K(t)p *wep (Palt, ), qalt, p),9) ,v) = (w,g)

holds for every w € C, N C? (é) .
THEOREM 7.9. This follows from the a priori estimate (5.1), that is,

HWHLQ(G) <C HLW - Kp72wapnp (Pas Qo ‘P)"Lz(g) .

Remark. Some other additional conditions relating to Problem P* for the wave
equation (instead of equation (1.1)) were formulated by Kan Cher [9]. These condi-
tions concern the boundedness of some integrals of Fourier-coefficients of solutions of
Problem P*.
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ON A CHARACTERIZATION OF THE KERNEL OF THE
DIRICHLET-TO-NEUMANN MAP FOR A PLANAR REGION*

DAVID INGERMANT AND JAMES A. MORROW'

Abstract. We will show that the Dirichlet-to-Neumann map A for the electrical conductivity
equation on a simply connected plane region has an alternating property, which may be considered as
a generalized maximum principle. Using this property, we will prove that the kernel, K, of A satisfies

(n+1)
a set of inequalities of the form (—1) T det K(x;,y;) > 0. We will show that these inequalities
imply Hopf’s lemma for the conductivity equation. We will also show that these inequalities imply
the alternating property of a kernel.

Key words. conductivity, Dirichlet-to-Neumann, kernel
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1. Introduction. In this paper we will derive some properties of the Dirichlet-
to-Neumann map for the electrical conductivity equation in R?. These properties are
analogs of properties which characterize the Dirichlet-to-Neumann maps for electrical
networks (see [1], [2], and [3]). We recall some definitions. Let Q be a relatively
compact, simply connected open set in R? with C? boundary. Let v(p) > 0 be a C?
function on Q. Let f be a function defined on 9. Then there is a unique function
u, defined on €, such that

(1.1) V(Vu) =0

and u(p) = f(p) for p € 9Q. (Equation (1.1) is the electrical conductivity equation
and a function, u, that satisfies (1.1) is called a y-harmonic function.) Let g—fl(p) be
the directional derivative of u in the direction of the outward pointing unit normal
n at the point p € Q. Then the Dirichlet-to-Neumann map, A, is defined by the
formula

(1.2) Af(p) = v(p)gfz(p)

The domain of A may be taken to be Hz (92) and the image is in H~2 (). A is a
pseudodifferential operator of order 1 and as such has a kernel, K(x,y), defined as a
distribution on 992 x 0€2. The kernel gives a representation of A by the formula

(1.3) Af(z) = ” K(z,y)f(y)dy,

where x and y are arc length coordinates on 0€2. For the pseudodifferential operator
A, the kernel K is a symmetric function, K(z,y) = K(y, ), and for a fixed x € 99,
limy ., |K(z,y)| = co. More precisely,

k(z,y)

(14) Klay) = 770

+ D(z,y),
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where k is continuous on 9Q x 09, k(x,y) = k(y,z), k(z,z) # 0, and D is a distribu-
tion supported on A = {(z,x) : € 9Q}. (In this formula, |z — y| is the separation in
arc length of points with arc length coordinates x and y and the continuous term in
this expansion has been incorporated into the term ";(fyylg ) If & supp(f), then the
integral is an ordinary integral and there are no convergence questions. Since we will
be interested in the behavior of K(z,y) for x # y we will ignore D and will pretend

that K(x,y) Mz.%)  The expansion (1.4) follows from Lemma 3.7 of [6] or Theorem

N
0.1 in [7]. The boundary, 012, is a Jordan curve and hence is homeomorphic to a
circle. Pick an orientation on 092. We say that (z1,...,Zn;91,...,Yn) is & circular

pair if there are points p,q € 9Q which divide 99 into two connected components,
A, B such that {z1,...,2,} C A, {y1,...,yn} C B, and x1,...,Zn,y1,...,Yn are in
circular order on 0€). (Note that this definition is modified from the definition in
[2].) The main theorem of this paper is the following theorem, which we prove to be
equivalent to the alternating property stated in section 2.

THEOREM 1.1. Let (x1,...,%n;Y1,---,Yn) be a circular pair on 0Q. Let L = (1;;)
be the n x n matriz with entries defined by l;; = K(x;,y;). Then

n(n+1)

(1.5) (—1)™% det(L) > 0.

We consider this to be a generalization of a result in [2]. We will see how it implies
the classical Hopf lemma for the conductivity equation in dimension 2.

2. The alternating property. We first restate and prove a result of [2]. Sup-
pose that 02 = I U J, where I and J are disjoint connected arcs. Then we have the
following theorem.

THEOREM 2.1. Let f be a smooth function on 00 such that f =0 on I. Suppose
there is a sequence of points {p1,...,pn} C I in circular order such that

(2.1) (=) Af(p;) > 0.
Then there is a sequence of points {qi,...,q,} C J in circular order such that

(2.2) (=1)"Af(p:i)f(qi) > 0.

Proof. Equation (2.2) is equivalent to

(2.3) Af(pi)f(gn+1-i) <O.

We first describe how to pick the point ¢,. Let u be the solution of (1.1) such that
u= f on dN. By (2.1) %(pl) > (. Hence there is a small open line segment, «, such
that o C €2, py is one end of a, and u < 0 on . Let W be the connected component
of {z € Q : wu(z) < 0} that contains a. Suppose that W N J = 0. Then u = 0
on OW. But this contradicts the maximum principle since u < 0 in W and W # 0.
Thus W NJ # 0. Now v = 0 at every point of W that is in 2. Using the maximum
principle again we see that there is a ¢, € W N J such that f(g,) < 0 and there is
an open line segment 8 C W such that ¢, is an end point of . Now we can connect
the ends of « and 3 that are inside W by a smooth curve in W. Hence there is a
smooth curve C; such that C; is diffeomorphic to a line segment, has end points py
and ¢,, and C; —p1 — ¢, C W. Then u(z) < 0 for all z € C; — p;. We can repeat
this argument to produce curves C; such that C; joins p; to a point g¢ni1—; € J,
Cj —pj — gny1—j C Q, and (—1)7u(z) < 0 for all z € C; — p;. These curves cannot
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intersect and by the Jordan curve theorem the points p1,...,pn,q1,- .., g, must be in
circular order on 9. It is easy to see that these points satisfy (2.3). O

We have referred to this property as the alternating property. Elsewhere [5] a
similar property has been called the variation diminishing property. See also section
6 of this paper.

3. The weak inequality. We first prove the weaker statement.
THEOREM 3.1. Let (x1,...,Zn;¥1,...,Yn) be a circular pair on 02, Let L = (;;)
be the n x n matriz with entries defined by l;; = K(x;,y;). Then

n(n+1)

(3.1) (—1) det(L) > 0.

Proof. The proof is by induction on n. We first consider n = 1. The proof goes
by contradiction. Suppose that there are points p, ¢ € 9Q with p # ¢ and K(p, q) > 0.
Then there is an e > 0 such that p ¢ D. = {y : |[y—q| < €} and K(p,y) > 0 for y € D..
Let f(y) be a continuous function on 9 such that supp(f) C De = {y : |y — q| < €},
f(q) >0, and f(s) >0 for all s € 9Q. Then

0G0 = A0) = [ Knsay >0

where u satisfies (1.1) and u(s) = f(s), s € 9Q. But then there must be a point z
near p in Q such that u(z) < 0. This contradicts the maximum principle.

Next we assume that the result is true for all (n — 1) x (n — 1) matrices and prove
that it is true for n x n matrices. If the result is not true, then we have a circular
pair (1,...,%n;Y1,--.,Yn) such that

n(n+1)

(3.2) (-1)

Consider the matrix L=! with entries (h;;). Then

det(L) < 0.

det(L;;)
det(L) ’

(3.3) hij = (=1)'"
where L;; is the (4, j) minor of L. By induction, (3.2), and (3.3),
(3.4) O M TR O ) asiiasy M)
Since L is nonsingular, for fixed ¢ there must be some j for which

(3.5) (—1) Ity > 0.

Now let w = [1,—1,1,...,(—=1)"*Y7T be an n-vector with alternating signs. Let
z = L~ w. Then using (3.4) and (3.5) it is easy to verify that

(3.6) (=1)""2 > 0.

To summarize, we have a vector z such that

(3'7) ( H_l = w; = ZK xhy,]
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and
(3.8) (—1)"zw; > 0.

Now, choose small intervals D; around the points y; such that the D; are disjoint
and do not contain any of the points x;. Choose the D; so small that

(3.9) |K (x,y) — K(xi,y;)| <€, ye D;, i=1,...,n.

Also choose functions f; such that

(3.10) supp(f;) C Dj, z;fi(y) > O,and/Dv fi=z.

Let f =3 f;. Then

IAF(z:) — wi] = /8 K () f)dy = 3 K w1z,

Jj=1

| G- K(xi,ymf(y)dy‘
N

n
< GZ EB
j=1

(3.11) =

Thus we conclude that for € small enough Af(x;) has the same sign as w;. By the
alternating property, there would have to be a set of n points ¢; in circular order such
that

(3.12) (=1)"w; f(t;) > 0.
For such a set of points we would have to have t; € D; and hence f(¢;) would have
the same signs as z;. This contradicts (3.8). a0

4. The strong inequality. We now prove Theorem (1.1). We consider the
cases n = 1 and n > 1 separately. Let us assume the arc length of 02 is S and that
points on 0§ are parametrized by the numbers in the interval [0,S5). When n = 1,
suppose there is a pair of points x1,y; with 0 < 1 < y; and K(z1,y1) = 0. By
(1.4) there is no sequence of points z; such that z1 < z; < y1, lim;_,o 2; = z1, and
lim;_,o K(21,2;) = 0. Hence there is a point 7o with 1 < 12 < y1 such that

K(z1,m2) =0 and K(z1,n) <0 for z1 <n < ne.

Let x be any number such that z; < x < 12 and choose 77 so that z < n; < 2. Then
(z1,2;m1,m2) is a circular pair and hence

K(z1,m) K(z1,n2)
1) K(wm) Km) | =

Since

K(IlaTIQ) = 07 K(w7n2) S 07 and K(:Ehlrll) < 07
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it follows that
(4.2) K(z,m2) =0.

This shows that for all x, with 21 < z < 72, K(x,72) = 0. Hence we get the
contradiction that limg_.,, K(z,n2) = 0.

The proof for n > 1 makes use of the following result in [2]. It was later pointed
out to us that Charles Dodgson (Lewis Carroll) used a version of this identity in [4].
Let (1,...,Zn;¥Y1,--.,Yn) be a circular pair. We assume that the coordinates on 02
are chosen so that 0 < z; < -+ - < xp <y; < -+ <y, < 5. Let L be the matrix with
i, j entry equal to K(z;,y;). We will use the notation

(4.3) K(T1y ey Tn Y1y -5 Yn) = det(L).
LEMMA 4.1. Let (a1,...,an41;b1,...,bnt1) be a circular pair. Then
(4.4) K(at, ooy @ni1; b1y ooy bnpr)k(ar, .oy @no1;b3, ... bptt)
= n(al, ceey Apg bl, bg, ey bn+1)/<;(a1, ey an,l,anJrl; bQ, e ,bn+1)
—K(a1,.. ., an;ba, .. bug1)k(ar, - @no1, Gny13 01,03, b)),

Assume that

(4.5) K(Z1y o s Tni Y1y vy Yn) =0
for some circular pair. First we claim that there is no sequence of points z; such that
Ty < zj <Y1, Umj_o0 2j = @y, and lim; o k(x1,. .., 20525, Y2,...,Yn) = 0. For this
would imply that there are constants ¢ (independent of j) so that
(4.6) K(wn,2j) = > cuK (k. 25),
k<n

and hence
(4.7 lim K(zp,2;) = Z e K (zg, xn),

Jee k<n

contradicting (1.4). Thus there is a number 7; with z,, < 7; < y; such that

(48) H(xla'“;xn;nhy%"'ayn):Oa’nd

(49) “($17~-~7$n§777y2a-~-7yn)#Of0r$n<77<771-

Let  be such that z,, < x < n;. Then there is an 7 such that x < n < n; and hence
(1, Tn, 31, M1, Y2, - - -, Yn) 1S & circular pair. By (4.4), (4.5), and (3.1),

(4.10) 0> K(T1,y ey Ty 1, M1, Y25 - oy Yn )R X1y e oy T 13 Y2y - o vy Yn)
= ﬁ(‘rla"'7xn;nay27""yn)’i(wla"'a‘rn—lyz;nlay%-“vyn)
_K‘(xla"'axn;nlay27"'7yn)’€(l‘17'"axn—lyx;nay27"'7yn)

= I’i(.’l?l,. ces Ty T Y2, ayn)'k‘:(xlw ey Tp—1,T5M1, Y2, - - - ayn) Z 0.
Using this and (4.9) we see that
(4.11) R(Z1,y ooy Tpe1, M1, Y2, - -+, Yn) = 0 for z, <z <.

As above, this contradicts (1.4) and proves the theorem.
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5. The Hopf lemma. We now show how the fact that K(x,y) < 0 for z # y
implies the Hopf lemma (reference) for the conductivity equation.

THEOREM 5.1. Let u be a nonconstant solution of V(yVu) = 0, and let p € 99
be a point where u assumes a minimum. Then

ou
on

Proof. We may assume that u(p) = 0. Let f = u|spq. Since u is not constant,
supp(f) is not empty. Thus there is an interval D around p in 992 such that supp(f)—D
is not empty. Let 1) be a smooth function on 9 such that ¢» = 1 on supp(f) — D,
1) = 0 on an interval around p, and 0 < ¢ < 1. Let g = ¢ f and let v be the solution
of V(vVv) = 0 with v|pq = g. Since f > g it follows that u > v. It is also true that
g > 0. Since p & supp(g) and K(p,y) < 0,

(5.1) (p) < 0.

ov ou

(5.2) 0> | K(pygly)dy = v(p)af(p) > v(p)a*(p),
o0 n n

which proves the theorem. a

6. The variation diminishing property. We will use the following notation.
Let M(z,y) be a continuous function on [¢,d] X [a,b]. Let ¢ <1 < 23 < -+ < 2y <
dy a <y <ys <--- <y, <b Let T be the n x n matrix with ¢, j entry equal to
M(IZ?D yj)' Let

(@1, T2, - T Y1, Y2, - - - Yn) = det(T).

The following lemma from [5] is sometimes paraphrased by saying that the kernel M
has the wvariation diminishing property. It will be used to show that the inequalities
(1.5) imply the alternating property.

LEMMA 6.1. Let f be a continuous, not identically 0, function defined on the
interval [a,b] such that f changes its sign on this interval no more than n — 1 times.
Let M (z,y), z,y € [¢,d] X [a,b], be a continuous kernel with the property that

(61) M(xth?"-7:En;y17y23"'7yn)>07

whenever ¢ < 11 < 2 < -+ < xp < d, a <y <Y < -+ <y, <b. Then the
function

b
o(z) = / M(z ) £ (y)dy

vanishes in [c,d] no more than n — 1 times.
By saying that function f changes its sign k times on the interval [a, b] we mean

that there are k + 1 points z1 < 23 < -+ < T41 in [a, b] such that for i =1,2,... k
(6.2) f(@i) f(zig1) <0

Proof. By hypothesis there are points a = sp < §1 < 859 < -+ < Sp_1 < Sp, = b
such that in each interval (s;—1,s;), ¢ = 1,2,...,n function f does not change its sign

and is not identically 0. For i =1,2,...,n let

(6:3) a@) = [ M) )y
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Then

(6.4) g(x) = gi().
i=1

For any c < 21 < x93 < --- < z, < d the determinant

Sn S1
det({gi(z;}) :/ / (1, Ty T Y1, Y2 - Yn) f (1) - f(yn)dyr - - - dyn
Sn—1 S0

(6.5)

is not 0 since the integrand is not identically zero and has constant sign. This shows
that there is no nontrivial linear combination of g;’s vanishing at n points and hence
that g(z) = Y., gi(z) cannot vanish at n points. |

We note that this proof only used the fact that p(z1, z2,...,Zn; Y1, Y2, - - -, Yn) has
constant sign. We need one more lemma before coming to the proof of the alternating
principal.

Let K(x,y) be a kernel on 9 x 9Q. We assume that K (z,y) is continuous when
x # y, but we don’t assume anything about K on the diagonal of 92 x 0. Let
K(T1, .., Tn;Y1,- .-, Yn) be defined as in section 4.

LEMMA 6.2. Suppose that k(z1,...,Tn;Y1,--.,Yn) is never zero and has constant
sign for all circular n-pairs (1,...,Tn;Y1,-..,Yn). Let O = I U J where I and J
are disjoint connected arcs. Let f be a continuous function on O with supp(f) C J.
Let

(6.6) 9(@) = [ K(z,y)f(y)dy.

a0
Then if there is a sequence of n+1 points in I in circular order at which g alternates
in sign, then there is a sequence of at least n+1 points in J in circular order at which
f alternates in sign.

Proof. If there is no sequence of n + 1 points of J at which f alternates in sign,
then f can change its sign no more than n—1 times in J. By Lemma 6.1, g can vanish
no more than n — 1 times in /. But we are assuming that g has n + 1 alternations of
sign in I and hence at least n zeros in I. This contradiction proves the lemma. 0

We now state and prove the theorem.

THEOREM 6.3. Using the notation of Lemma 6.2, suppose that

n(n+1)

(6.7) (=) "7 k(X1 s T Y1y oy Yn) >0

for all n > 0 and all circular n-pairs (x1,...,2n;Y1,...,Yn). Let f be a continuous
function on 0Q with supp(f) C J. Let

(6.8) g(x)= | K(z,y)f(y)dy.
o

Suppose there is a sequence of points {pi1,...,pn} C I in circular order such that
(6.9) (=1)"*g(ps) > 0.
Then there is a sequence of points {qi,...,q,} C J in circular order such that

(6.10) (—=1)"g(pi) f(g:) > 0.
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Proof. By Lemma 6.2 there is a sequence of points in J at which f alternates in
sign. If there is no sequence with the desired alteration property then J is a disjoint
union of subintervals J;, in circular order, such that

1. f is not identically O on J;, i =1,...,n,

2. f does not change its sign on J;, i =1,...,n,

3. for some z; € J;,

(6.11) (=) f(2) > 0.

We use the idea of Lemma 6.1. For i =1,2,...,n let

(6.12) 5i(0) = [ Klz) )y
Ji
Then
(6.13) 9(x) = 3 gil).
Let
gi(z1) g2(w1) ... gn(z1)
(6.14) G = gl(.xz) g"(.xz)
(@) .. gu ()

Let u be the n-vector with u; =1, ¢ =1,...,n. Then

g(1)
(6.15) Gu = 9(3.32)
9(xn)

Using (6.11) we will show that the signs of w are all negative. This contradiction
will prove the theorem. We need to compute the signs of the entries of G~!. Rather
than get lost in a cloud of indices, we will give the proof in the case that n = 3 and
leave the general proof to the reader. In this case the assumption (6.11) implies that
fly) >0in Jy, f(y) <0in Jy, and f(y) > 0 in J3. As in section 3 we compute the
signs of the cofactors of G. First we have

(6.16) det(G)Z/ / / K(z1, T2, w35 Y1, Y2, y3) f (1) f (y2) f (y3)dy1dyadys < 0.
Jy JJo JJ3
We find that

g2(z2)  gs(w2) | _ .
(6.17) ‘ go(s)  galas) ‘—/]2 /J3 K(T2, 23; Y2, y3) f (y2) f (y3)dyadys > 0.

Hence (G~ 1)1 < 0. Next we compute that

(6.18) (—1)t*2

iigii Zigzzg ‘:/J /J K(z2, 23391, y3) f(y1) f(ys)dyrdys > 0,
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and thus (G71)2; < 0. Continuing the calculation we find that the signs of G=! are
as follows:

+
(6.19) G'l=|- + -
+

This yields the contradiction

-+ - + 1
(6.20) - 4+ - —|=11]. o
-+ - + 1

7. Remarks and conjectures. We have not tried to state the most general
hypotheses under which our results are valid, but have stated them in such a way that
the essential ideas of the proofs are clear. We can also prove determinant inequalities
for certain “blocks” in Dirichlet-to-Neumann kernels for multiply-connected plane
domains. We can differentiate our inequalities to get a set of inequalities involving
determinants of derivatives of the Dirichlet-to-Neumann kernel. These inequalities
are equivalent to the set of inequalities (1.5). In our arguments we seem to need to
assume that v is in C?(Q); however, it is possible that weaker assumptions would
suffice.

We would like to single out the following conjecture on characterizing the kernel
of a Dirichlet-to-Neumann map.

CONJECTURE 1. Let Q be a relatively compact, simply connected region in the
plane with C? boundary. Let K(z,y) = Ikzr(fﬁ?“’ where (xz,y) € 00 x 00 — A, k is
continuous on 0N x 0N, k(x,x) # 0, and K satisfies (1.5). Then there is a distribution
D(z,y) on 9Q x 09, supported on the diagonal, A, and a reqularization of K as a
distribution on 02 x 02, so that L = K + D is the kernel of the Dirichlet-to-Neumann
map for some conductivity, v, on Q. The distribution D is determined by the property
that

(7.1) /asz L(z,y)dy = 0.

Equation (7.1) is analogous to the fact that the Dirichlet-to-Neumann matrix for
an electrical network has row sums equal to zero. This implies that the diagonal is
determined by the off-diagonal terms. This is true as well in the continuous case.
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EXPONENTIALLY GROWING SOLUTIONS FOR NONSMOOTH
FIRST-ORDER PERTURBATIONS OF THE LAPLACIAN*
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Abstract. We construct exponentially growing solutions for first-order perturbations of the
Laplacian which are not smooth. We apply this kind of solution to prove global uniqueness for an
inverse boundary value problem for the Schrédinger equation in the presence of a magnetic field.
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1. Introduction. The idea of using exponentially growing solutions in the con-
text of inverse boundary value problems goes back to Calderén [C]. Motivated by
Calderén’s idea, Sylvester and Uhlmann [S-U] constructed exponentially growing so-
lutions in order to prove global uniqueness for the conductivity of a body knowing
the so-called Dirichlet-to-Neumann map.

The method of constructing exponentially growing solutions has been applied to
other inverse problems like the inverse scattering problem at a fixed energy [N] and
inverse spectral problems. However, Sylvester and Uhlmann’s methods cannot be
applied when we are in the presence of the first-order perturbation. Examples of this
situation are given by the following:

(1) the problem of determining both the electrical conductivity and permitivity
of a body and its magnetic permeability by measuring the tangential components of
the electric field and the magnetic field at the boundary [O-P-S];

(2) the problem involving measurements at the boundary of an elastic medium,
in which one measures displacements at the boundary and the corresponding stress
at the boundary [N-UJ;

(3) the problem of determining both the electrical potential and the magnetic
potential from boundary observations [Su], [N-Su-U].

This last problem is modeled by the Schrédinger equation in the presence of a
magnetic field and it will be considered in this paper as an example of our techniques.

Let ©Q be a bounded domain with smooth boundary in R™, n > 3; then the
Schrodinger equation in the presence of a magnetic field is given by

n

2
(1.1) He, =Y (—z‘aij + Cj(x)> +q(x),

Jj=1

where C' = (C1, ...,Cp) is the magnetic potential and g is the electric potential. As-
sume C' € C1(Q), ¢ € L>(Q) and both are real valued. If we assume further that
zero is not a Dirichlet eigenvalue of (1.1) in © then we have that for any f € H'/?(Q)

*Received by the editors March 25, 1996; accepted for publication (in revised form) October 29,
1996.
http://www.siam.org/journals/sima/29-1/30103.html
TUniversity of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195-4350
(tolmasky@math.washington.edu).
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there exists a unique u € H'(Q) which solves

Hs =0 in Q
1.2 Ca ’
(12) { uloo = f.
We define the Dirichlet-to-Neumann map by
ou =
(1.3) Mogif— 58 +ilCn)f.
M oa

where f € H'/?(Q),u solves (1.2), and 7 is the unit outer normal to .

The problem we consider is the one of recovering information about C and q given
knowledge of the Dirichlet-to-Neumann map. It is well known (see [Su], [N-Su-U])
that the Dirichlet-to-Neumann map is invariant under gauge transformations in the
magnetic potential. Consider g € Cf,, where
(1.4) Ci = {g € C*(R) : suppg € O},
and consider the magnetic potential C+ Vg. Then AC‘,q = AC‘+Vg,q' Therefore,
we cannot hope to recover C from the Dirichlet-to-Neumann map. However, we can
see that rot(C) is invariant under a gauge transformation. It is then natural to
wonder whether full knowledge of the Dirichlet-to-Neumann map gives full knowledge
of rot(é) and of ¢q. This question has an affirmative answer given by Z. Sun in the
case that the magnetic potential belongs to C3 and ¢ € L>(2) provided that rot(C_")
is small in the L* topology [Su], and by Nakamura, Sun, and Uhlmann in the case
that ' € CF and ¢ € L (£2) under no assumptions on rot(C) [N-Su-UJ. In this paper
we prove the following theorem.

THEOREM 1.1. Let éj € Ch,q; € L™(Y), j = 1,2. Assume that zero is not a
Dirichlet eigenvalue for H@hqj, i=12.1If

A

C_"1#h = AC_:2~,¢12

then
rot(Cy) = rot(Ca) and ¢ =qa in Q.

In [N-U], Nakamura and Uhlmann proved a result that enables us to find expo-
nentially growing solutions to any smooth first-order perturbation of the Laplacian.
In the same paper they used the solutions to prove global uniqueness for the inverse
problem related to the elasticity system mentioned above.

In this paper we give a general method to construct exponentially growing so-
lutions in the case that the first-order perturbation is not smooth. We note that
the problem of global uniqueness in the case of a conductivity having less than two
derivatives has been addressed by R. Brown in [Br]. Our method works by splitting
the first-order term into a smooth part, with which we deal by following [N-U], and a
nonsmooth one, for which we need estimates. Namely, we consider

Sa(u) =(A+C-Vyu=f
with € € C2/3+¢(Q), e > 0. After conjugating by ¢*” (p € C", p- p = 0) we get

(1.5) Se, =0 + C-Vyu=Ff.
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We can now decompose C- V, into a pseudodifferential operator in the Shubin
class (see [S]) plus a pseudodifferential operator with nonregular symbol depending
on the parameter p for which we prove estimates.

The paper is organized as follows. In section 1 we define the spaces of symbols
with limited regularity and we will show how to “smooth out” such symbols. The
following section contains the proof of the dependence on the parameter p of the norm
of the pseudodifferential operator associated with a symbol with limited regularity
between Sobolev spaces. In section 3 we give the construction of the exponentially
growing solutions for a generic perturbation of the Laplacian and in section 4 we prove
Theorem 1.1.

2. Symbol smoothing. In this section we are going to smooth out nonregular
symbols depending on a parameter. The ideas are similar as if we were working with
no parameter at all (see [T, section 1.3]).

We recall now the definitions of the spaces C'*(R™) and C%(R™).

DEFINITION 2.0.1. Given 0 < s < 1, C*(R") is defined as the set of functions
u such that

lu(z +y) —u(z)| < Clyf

For k =0,1,2, ..., we take C¥(R™) as the set of bounded continuous functions u
so that DPu is bounded and continuous for any 3 such that |3] < k.

Then, if s = k+7r, 0 < r < 1, we define C*(R™) as the set of functions
u € CF(R™) so that DPu belongs to C™(R™) for |3| = k.

Let us consider the partition of unity

1= (8,
=0

where 1, is supported on (1+]£|2)'/2 ~ 27 (by this we mean that there are constants
M, and My so that (14 |€[?)Y/2 < M;27 and (1 + |€]?)Y/2 > My27).
DEFINITION 2.0.2. If s > 0 we say that u € CZ(R™) if and only if

sup 2ks||wk(D)uHLoo < 00,
k

and we define || ||cs as the supremum of those numbers.
A family of spaces {X* : s € X} will be called a scale. We will be working with
the spaces C* and C?, so in our case ¥ = (0, 00).
We will introduce classes of symbols with limited regularity.
DEFINITION 2.0.3. Let § € [0,1]:
(a) pp(x, &) € C’fS{’f&p(R") if and only if
Dgpy (&) < Cal(L+ 67 +[p*) 7)™ 1!
and
1 m—|«x S
1Dgpo(-Ollc: < Ca (1 + [ + [p*)z)m ol

for any o € Z7}.
(b) pp(x, &) € C°ST% ,(R™) if the conditions on (a) are satisfied and, additionally,

1DEP, (e < Ca (L4 € + [pf?)2)m o458

forany o € Z% and 0 < j <s,j € N.
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Our goal is to write a symbol p,(z,§) € X°57 , ,(R") (where X* = C* or C3)
as a sum of a smooth symbol and a reminder of lower order. We will find that the
smooth part does not belong to ST, ,, but rather to one of the classes S{’f&’p.

We will need a partition of unity z/JZ of R™ such that

1= "4i(9),
=0
where 1 is supported on (1 + [¢[*)1/2 ~ 27(1 4 |p[?)!/2.

To construct such a partition we take wg(f ) to be positive such that

[ Al < (1 o)
Po(&) = { 0 if [¢] > 2(1 + [p|?)Y/2.

Finally, we set \I/f; &) = w2(2*j§) and wg(g) = \Iﬂp'(f) — \I!{fl(g).
Now, given p(z,§) € X*S}, ,, choose é € (0,1] and set

(@, €) =Y T p(x, E)U)(E),
j=0

where

(2.1) Jef(x) = 0(eD) f(x)
with 0 € C°(R™), 0(€) =1 for |¢] < 1. We take
(2.2) e =271+ o*) V2.

We then define pg(x, €) to be p,(z,§) — pf)(x, £), so our decomposition is

(2.3) pp(%f) :Pﬁp(xaf)+Pg($a§)~

DEFINITION 2.0.4. A scale X? is called microlocalizable if, form € R, s,s+m €
b))

OPST : X°t" — X°.

FEzxamples.

(1) The Sobolev spaces H*P(R™) are microlocalizables provided p € (1,00).

(2) The property fails for the spaces C* if s is an integer, but it turns out to be
true for the Zygmund spaces C3.

The following lemma will be useful to analyze the two terms in the decomposition
(2.3); for the proof we refer to [T, Lemma 1.3.A].

LEMMA 2.1. Let {X*®: s € X} be a microlocalizable scale; then, for e € (0,1],

(2.4) IDZJfllxs < Cp e fllx
and
(2.5) If = Jefllxs—r < C e |flxs fors,s—tex, t>0.

Using this, we derive the following proposition.
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PROPOSITION 2.2. If X* is a microlocalizable scale and p,(v,§) € X°*STy ,,
then we have

(26) Pg(%f) € Sirr,L&p
and
(2.7) ph(x,€) € X*TIST I if s, s—te X

Proof. Let j be a nonnegative integer and suppose that (1 + |£]?)1/2 ~ 27/(1 +
Ip|)Y/2, ie.,

(2.8) A+ < Cr27(1+p*)Y?  and 27(1+[p*)/? < Co (1 + [¢)V?

for some constants C; > 0 and C5 > 0. Then

(L+ € +1pH)Y? < (CE 2% (1+ |p|?) + [p|H)Y/?
(2.9) < (CF2% + 1)Y2 (1+]p*)"/?
< (CF + DY2 20 (1+|p)/2
and
(2.10) 2 (1+ p)? < Co(1+ [¢)?)1/?
< Co(1+ €17 + /)2

From (2.9) and (2.10) we obtain that
(LHIEP)Y2 ~ 21+ )2 = L+ 1P+ 1) ~ 2 (14 |o*)2.

Let us analyze first the smooth part pﬁ(m, €). We fix j a nonnegative integer and & so
that (1+[€[%)"/% ~ 27(1+[p[*)"/%. By (2.2), (2.4), (2.10), and p,(z,€) € X*S7,

we have

1D2 T3 po(€)1x-

IN

Cy ()79 |Ip, (-, €)1 x-
C (22(1+ [p|)/2) 2 (1 + (€2 + [p]?) /2™
CB ((1 + \§|2 + |p|2)1/2)m+6|ﬁ\.

(2.11)

IN A

To prove (2.7) we first notice that derivatives in the z variable commute with the
operators defined in (2.1); then it is enough to prove the estimates for pl;( -,€). Then,
by (2.2), (2.5), (2.10), and p,(z,&) € X*S7 , we have

D5+ &)l -

IN

C ()" Ipo(-, 8l x
C 21+ oY)~ F (1 + (€ + ) /2™
C((L+ €L+ [pH)/2)m .

(2.12)

A

IN

3. Continuity in H*(R") of symbols in C[S"; (R"). The crucial step in
the construction of the exponentially growing solutions is to know the dependence on
p of the norm of operators with nonsmooth symbols. More specifically we will use the

following result.
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THEOREM 3.1. Let v >0 and p,(z,§) € CLST ,(R™). Then
py(z,D): HTP(R") — H*P(R")
with
1 STm
Ipp(2, D)l[sm,s < C (L4 ]p[*)2)**

where 0 < s <r, p € (1,00), and || ||s+m,s denotes the operator norm between Sobolev
spaces.

We will use the following results from the Littlewood—Paley theory.

LEMMA 3.2. Let fr, € S'(R™) be such that, for some A > 0,

supp fr C {€;A2871 < ¢ < A28k > 1,

and fo has compact support. Then, forp € (1,00), s € R, we have

> I ~ {Z‘lks | fel? }
k=0 k=0

Hs:p Lr
LEMMA 3.3. Let fi, € S'(R™) be such that
supp fi © (€5 €] < AQL+[pl)z 2}k > 0.

Then, forp € (1,00), s > 0, we have

> f <C {24’“ (1+1p*)2 W}
k=0 Hs:p k=0

Lp

Proof of Theorem 3.1. The idea of the proof was taken from [T, Theorem 2.1.A]
and it follows pioneering work of Coifman and Meyer [C-M]. See also Bourdaud [B].
By following [C-M] we can restrict ourselves to considering elementary symbols in
C1 ST ,(R™). An elementary symbol in C[ ST, (R™) can be written as

0.6 =3 Qula) ¢5(©)
k=0

with supp ¢ on (1+[€P)/2 ~ 28 (1+[pf2)1/2.
So, by the definition of the class C7 ST ,(R™) we have that

3.1 1Qk(-) #p(©) |

We now consider a partition of unity ¢; with supp 1; on (1+[£[2)z ~ 27,
Let Qr;(x) = 1;(D) Qr(z) and fr = ©h(D)f.

cr < A(AL+IEPR+1p)2)m.

*

Then
o [k-4 k+3 )
@)= [T au@+ 3 Qu@+ S Qu@) | ¢i©
k=0 \j=0 j=k—3 j=k+4
(3.2)

= a,(2,6) + ¢p(2,€) + ¢)(x,€).

We will work with each qf),i = 1,2, 3 separately.
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Let us start with ¢} (z, D).
We have

k—4

supp | Y Quj fr |~

Jj=0

C &2+ p)Y2 < e < 28T+ )P 4+ {& €] < 288}
C{&2" 1+ [p|)YV2 < g < 26T+ )2} + {& 1€ < 28731+ |pf?)/2).

CH{G A2 (14 [p) /2 < g < A28 (1 + o) /2).

By Lemma 3.3 we get

1
2

e’} k—4
(33)  llgh(a, D) fllmer < C (L4172 S 41> Qi fi I

k=4 j=0

Lr
From (3.1) and the definition of the spaces C? we get
(3.4) 1Qk; (@)l < B 2797 257 ((1+[p])2)™,
from which we obtain
o 1/2
lag (@, D)fl=n < Cu [[{ Do AMH™ (L +1p*)2) | ful?

(3.5) P B

IN

Cr [ fles+m.»-

We now make use of Lemma 3.2 to get

[N

(Z 4RCEm) (14 [pP)V/2)stm] |2> < C |\ fllggosmors

k=1 p

which, combined with (3.5), gives

(3.6) lgi(@, D)fllzrer < Cv Iflaesmen-

So, the result holds for g} (x, D). Let us proceed with ¢>(z, D).
In this case,

k43
supp | Y Qi fu | ”
j=k—3
C &2 T A+ [pI)? < (g < 2" 1+ )2} + {&2 < g < 2¢)
&2 A+ )2 < el < 25T+ 1012 + {6 1€ < 2+ [p)VP)

C{l¢] < A 281+ [p|H)Y/?.



EXPONENTIALLY GROWING SOLUTIONS 123

By Lemma 3.3,
2 2
o k+3
g2 (2, D) fllaer < C (14 o) I3 45| S Qi fi
k=0 j=k—3

Lr

Therefore, by (3.4), |Zf:;:’_3 Qrjl < C 28 ((14]p[?)2)™, and then we obtain

o0

g2 (x, D) fllger < C ((1+]p*)H/2)5tm {Z 4rletm) | f I2}

k=0 o

< C A+ )25 | fol + (Z 4| £ I2>

k=1 »

1

< ¢ [ (@+1p)Y?) ™ follpw + (Z 4EEHM) (14 p|2)V2)5 M fy |2>

k=1 I

The estimate for g2 follows if we notice that || fol|z» < C'[|f||z» and that

1

0 2

(Z gk (s+m) ((1 + |p|2>1/2)s+m|f’C |2> <C ||f||Hs+m,p.
k=1

Lr

Finally, we prove the result for qg (z, D).

j—i j—
supp (Z Qrj fk) “c | (gt < g <2t
k=0 k=0
HE2TH L+ o) < Jel <21+ o))
j—4 ‘
c U & lel <2711+ 1o)2) + {6 1€ < 211+ o) /2))
k=0

C{lél < A2(1+[p) .

Applying once more Lemma 3.3 we obtain

o) j—4 2 %
I3, D) flarr < C (L4122 (43 9% 3 Qus fi
=4 k=0
Lr
oo |j—4 2\ 1/2
< C ((1+ |p|2>1/2)s+m Z Z 2js 2—]’7" 2km fk
j=4 |k=0

Lr
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o) —4 2\ /2
= C ((1 + ‘p‘2)1/2)s+m Z ZQ(k 7)(r—s) 2k(s+m) f ,
j=4 k=0

Lp

where we used (3.4) and the fact that 27%" < C. We now set

N

Fk: — 2k(s+m)|fk| 7 G] — 2(k7j)(7“78) Fk~
0

[

>
Il

Recalling that 0 < s < r we get, by using Young’s inequality, that

g2 (2, D) fllrren < C (14 |pf?)1/2)5+m {Z 4R | | }

Lr

and we can now follow the steps from the previous case.
So, the theorem is proved by putting together the estimates for each one of the
three pieces.

4. Constructing the solutions. Let us consider the equation
Saw)=(A+C Vw=f
with ¢ € C™¢(Q) , ¢ >0, and r > 0 to be determined.
Let S5 o= e *PSze”P. Then

(4.1) Se,=0pw + C-Vow=f,

where A, = e™"PAe"?, V,= e *PVe*P, and p € C" withp-p = 0.
In this section we prove the following proposition.

PROPOSITION 4.1. Let r = %; then S@p admits a bounded inverse Scjlp :

L3(Q) — HY(Q). Moreover, if f € L*(Q) and w = Sglp(f) we have
C
(4.2) lwllz2) < m“fHLQ(Q)a

(4.3) Wl @) < Cllf @),

with C' independent of p. . .
By the regularity assumed on C we get that C'-V, € OPCTJFESll,O)p(R").

Let us decompose ok V, in two parts:
(4.4) C-V,=Nix,D) + Ni(z,D),
where
Ni(z,D) € OPS} 5 ,(R")
and
N} (xz,D) € OPC™ S| T (R™)

for any 6 € (0,1),and r <t <r+e.
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Now take t = 7 + § and t6 > 7. Then we get that
(4.5) N}(x,D) € OPC3S], (R™)

with n =1 — té.
So, in order to find solutions of (4.1), it would be enough to find solutions of

(4.6) (A, + Ng(a:,D))w =f

and to use Theorem 3.1.
To solve (4.6) we make use of the following result due to Nakamura and Uhlmann.
LEMMA 4.2. Let N € N. There exist operators A,(x, D) and B,(x, D) properly
supported and belonging to OPS?’é)p(R”) such that for any ¢1 € C§°(R™) there exist
2,03 € C3°(R™), and M > 0 so that

(4.7) ¢1(A, + Ni(z,D))A,(z,D)v = ¢1B,(z, D) (A, + 2R, N~ (2, D)3)v,
where

¢ Ry N7 (2, D)gs : H*(R") — H™(R")
18 a bounded linear operator with

o R, N0 (2, D)3 pro(rny o mey < C (14 ]p]?)!/?)~ N9

forpe Z |p| > M, and any o € R. The functions ¢1, ¢a, @3 are taken to satisfy

P192 =91,  P193 = ¢,
and
$1By(x, D)o = $1B,(x, D).
It is clear that we can assume that ¢1, ¢2, @3 also satisfy
OINp (@, D) = o1 N)(z, D)pa,  ¢2A,(x, D)gs = ¢2A,(x, D).
In terms of (4.1) we see that we would get

#1(Sa ) Ap(x, D)v

(4.8) o’ _N(1-6 b
= ¢1B,(z, D) (A, + ¢2 RN (2, D)ps)v + o1 NE (2, D)2 A, (x, D) dsv.

So, for any f € L?(R™) it is enough to solve

(4.9) ¢1(By(x, D) (A, + ¢2 RN (@, D)g3) + 1N} (2, D)doAy(w, D)) = f

or, which is the same,

(4.10) (A, + ¢2 RN (2, D) + ¢4 (By(x, D))" ¢1 N} (x, D)daAy(x, D)3 )v
= ¢\ (By(z, D)) "o1(f).
If we call

T, = 2R, N0 (2, D) s + ¢ (B,(x, D))~ ¢1 N} (x, D) b Ap(x, D) s
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we see that we need to study mapping properties for T,. By Theorem (3.1) we know
that

(4.11) NY(z,D) : H""37(R") — H?7(R")
with

(4.12) IN; (2, D)| < C ((L+ |pP)r/2ymts

H"H'%‘Y(R”),H%—Y(R”)

for any v € (0,1).
By [S, Theorem (9.1)] we know that

¢2A,(z, D)y : HTT37V(R™) — H" 27(R™)

with
12 Ap(2, D)@l ot 5+ gmy gro+sv@ny < C ((L+ |p|?)1/2)1t a7
and that
$1(By(z, D)) "¢1 : HE(R") — L*(R")
with

||¢/1 (Bﬂ(mv D))_1¢1||H§’Y(R7L)7L2(Rn) < C

Putting all this together we obtain the following lemma.
LEMMA. T,|x : H""27(K) — L*(K) for any compact set K D Q and we have

(4.13) 1T, x| < C((1+|p?)3)2nter

H"T2Y(K),L2(K)

with v € (0,1) and C depending only on Q.

We now compose T|q with A7! and make use of the fact that AJ!: L?(Q) —
H?*(Q) with
IR
((1+]pl2)2)
for s € [0,1] and C depending only on . We therefore get Tplo o A : L*() —
L?(Q2) with

(4.14) 1AL 22 (), a0 (2) <

—

4.1 T At < .
(4.15) 1Tl o P 2.2 < C ((1+|p|2)%)1737]*267

So we see that, in order for this last expression to decay for |p| big enough we need

n < % If we recall that n =1 — t6 and that t6 > r we arrive at the conclusion that

r must be at least %
Then we can solve (4.10) on Q with the following estimates:

C .
(4.16) l1v]|L2@ny < 7l 1 £z ®nys
where ¢; € C§°(R™) is taken so that

$1 (Sé,p)AP(‘r7 D)y = ¢1 (Sé7p)AP(x’ D)



EXPONENTIALLY GROWING SOLUTIONS 127

and

: | f in Q
(4.17) f= { 0 inR"\Q.
So by now taking 1o € C§°(R™) so that 2 = 1 on Q and calling w = 93 A,(x, D)y v
we obtain, from (4.10), (4.16), and [S, Theorem 9.1],

(4.18) Sg,w =[f in

For the estimate involving derivatives we are going to use the following standard
interior estimate which we state without proof.
LEMMA 4.3. Let w € HY(Q) a solution of

Aw = —F in Q;
then

(4.19) lwllarvey < C(1Fla-1@) + lwllzz@))

provided Q) CC Q.

Proof of (4.3). Without loss of generality we can assume that (4.18) holds in a
slightly bigger domain €’ and assume further that C is defined in €. From the lemma
we obtain
(420)  Jwlmo) < C(l=2p- Vo =C-(V+plw+ flla-@) + [wlr2@n).

So the inequality follows by the fact that ||Vw||g-1() < C ||w| 2oy and by using
(4.2) with Q replaced by ' and f replaced by flo (notice that || f||z2) = || f]lz2)-

5. Application to the Schrodinger equation in a magnetic field. The
purpose of this section is to apply the solutions we constructed to an inverse boundary
value problem for the Schrédinger equation in the presence of a magnetic field.

Let 2 be a bounded domain in R™, n > 3, with smooth boundary. The equation
we are going to study is given by

n 2
(5.1) He, =Y (—iﬁ‘; + cj(x)> + q(z),

Jj=1

where G = (C4,...,Cp) € C*(Q) is the magnetic potential and the scalar function
q € L™(Q) is the electric potential. We assume both to be real valued.

We assume further that zero is not a Dirichlet eigenvalue of (5.1) on Q. Then the
boundary value problem

(5.2) { Hgu=0 in £,

ulon = | € H'2(09)
has a unique solution u € H'(). The usual computations give that the Dirichlet-

to-Neumann map in this case is given by

Ju
ov

where u is the unique solution to (5.2) and v is the outer normal to JS.

(5.3) Aoy f— o +iC-v)f, f €H*09),

5
The question here is under what assumptions we can recover C' and q.
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It is well known that two magnetic potentials C and C + Vg, where
(5.4) g€ Cqy={feC'(R"):supp f CQ},

produce the same Dirichlet-to-Neumann map [Su]. As rot(C) = rot(C + Vg) it is
natural to ask whether rot(C) and ¢ can be uniquely determined by Ag - Z.Sun [Su]

proved that this is actually true in the case that the magnetic potential c belongs to
C3 and the electric potential ¢ is a bounded function on €2 provided rot(C) is small
in L*°(€2). He proved the following theorem.

THEOREM 5.1 (Su). Let C_"j € C3 (see (1.4)), qj € L>=(), j =1,2. Assume that
zero is not a Dirichlet eigenvalue for H@j)qj, 7 = 1,2. Then there exists a constant

—

€ = €(Q) > 0 such that if |[rot(Cj)|lp=@) <€ j=1,2, and

Aé1,Q1 = Aéz,@’

then

rot(Cy) = rot(Cs) and ¢ =qo in Q.

The restriction on rot(C_") was removed in the case that C is in the C* class by
Nakamura, Sun, and Uhlmann [N-Su-U]. They proved the following theorem.

THEOREM 5.2 (see [N-Su-U]). Let C; € CF (see (1.4)), ¢; € L®(Q), j = 1,2.
Assume that zero is not a Dirichlet eigenvalue for Héj,qjv =12 1If

Aéval = Aé%‘lz

then
rot(Ch) = rot(Cy) and q =qo in €.

Using the solution we have constructed already we are able to prove Sun’s theorem
without the restriction on rot(C).

As we said before, recovering rot(C_") is the most we can expect from the Dirichlet-
to-Neumann map. Therefore, this result appears to be optimal.

Remark. We could follow [Su] up to the point in which we use the solutions
constructed in the previous section. However, by doing so we would get a weaker
result; namely, we would end up needing 03- € C3,i=1,2. We sketch how to remove
the condition on rot(éj),j = 1,2 following Sun’s proof.

Let us look for solutions of H, G of the form

(5.5) u(w, p) = PO (L 4 w(z, p)),

where p € C™ is a complex vector satisfying p-p = 0 and w(z, p) has decay properties
that we will state. By plugging into the equation H 5 qu(sc, p) = 0 we get the following
couple of equations:

—

(5.6) p-V¢=—ip-C,

(5.7) Aw+2(p+Vp+iC) - Vw —gw =g,
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where
(5.8) g=C?—iV-C+q—2iC-V¢—-Vo¢-Vp— Ag.
We use (2.6) in [Su] to solve (5.6). We get that ¢ € C?(Q2) and

(5.9) 6 <|Z|> lox@ < C I ClIca.

From (5.8) and (5.9) it is clear that 6j € C3,i = 1,2 cannot be lowered. We will
come to this later. We can rewrite (5.7) as

(5.10) Ayw+D-Vw—hw=h,
where
(5.11) A, =A+2p-V, D=2(Vo+iC)p, h=gi

and ¢ € C§°(R™) with ¢|q = 1.

By (5.9) and the regularity assumed on C we see that V¢ € C1(Q) and then
D € C1(Q). By the results from the previous section we know that for any f € L2()
we can find w € H'(Q) so that

(A, +D-Vyw=f in Q.

Moreover,

C
(5.12) w2y < 7l I £1lz2 ()
(5.13) [wllar@) < ClIfllez@)-

Therefore, it would not take much effort to prove Sun’s theorem without the smallness
condition. However, it pays off to take a slightly different path. By doing this we will
be able to remove the smallness condition and also to sharpen the requirement on the
regularity of the magnetic potential. We rewrite the Schrodinger equation as

(5.14) Hg,=—-A—2C(x) V+G(a),

where G = C? —QiV-C_"—l—q.
If we look for solutions of the form e*?(1 4 w(x, p)), we get

He g,

w=(A,+2C-V,+ G(z))w = —G(z).

In the previous section we proved that A, + 20 - V, is invertible as a map from
HY(Q) — L%*(Q) and satisfies the usual estimates. We now prove that the same is
true for A, +2C -V, + G(x).

LEMMA 5.3. Hg , , admits a bounded inverse Hcilq S L?(Q) — H(Q). More-
over, if g € L*=(Q) we have

C
—1
HHC”’q)p(g)H[?(Q) < m”g”Lz(Q)’

||Hc:,1q,p(g)||ﬂl(ﬂ) < Cllgllz2 )

with C' independent of p.
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Proof. Applying (A, + 20 - V,)~! to both sides, we get
(5.15) (I+T)w=—(A,+2C-V,)"G),

where T'= (A, + 2C - V,) "o (G). By the regularity assumed on C, G e L™(Q) and
then we obtain that 7' : L?(Q2) — L?(f2) with

<«

G|l Lo
ol

T 220,02 () <
Therefore (5.15) has a unique solution provided |p| is big enough. So the first estimate
follows from [|(A,+2C-V,)"(G)|| r2(0) < % |G|l L2()- We can now get the remaining
estimate by writing

w=(A,42C-V,) 1 G +w)).

We now turn to analyzing the behavior of the operator A, when |p| — oo.
LEMMA 5.4. Let ¢ solve (5.6) and p = spy, with s € R and |po| = 1. Then if
f € C§°(R™) we have that

(5.16) lim A,(z, D) f(z) = e* @00 f(z)
uniformly on compact sets.

Proof. Let us fix a compact set K C R™. By developing a,(z,&) (the full symbol
of A,(x, D)) in Taylor series in  we get:

(5.17) ay(2,€) = a,(x,0) + Z&%am, 0) + Ry(2,£,0),
i=1 v
where
n 1 82
(5.18) R,(z,€,0) = ;1/0 (1— t)gigjmap(x, t€)dt.

Now apply the operator given by (5.17) to f € C§°(R™). We need to prove that

n 0 n e 1 92 .
;a—&ap(:c,O)Dzi(f) and Z /e (/0 (1 —t)a&agjap(:c,tg)dt> &&f(&)de

ij=1

tend to 0 uniformly on K as s — oo. By the estimates on a,(z,§) it is easy to see this
for the first term. For the second one we use

82

——a

‘ 9E0¢; "

Cx . Ok
L4 [t€2 + |pl> = 1+]p?

(:c,tf)‘ <

which is valid for any = € K. This proves that |A,(z, D) f(x) —a,(x,0)f(z)| — 0 as
s§ — oo uniformly on K.
Now, a,(z,0) solves the following equation:

p- Viog(ay(x,0)) = =i (C(x) - p).
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Solving it we get

1 iz P 0(egn)C(n)
log(a,(z,0 :7/ v 2 dn
or
1 o 1 0(SmCn)
l 0) = —— wenlPl " P77 gy,
09(0y(.0)) = s [ € 2
As s — o0, 62 — 0, so the last expression approaches
L
1 /e—i:cn ol (?7) d?’]
(2m)" hrem

as s — oo uniformly on compact sets which says that lim,_. log(a,(z,0)) satisfies
(5.6).

We recall, without proof, the following identity proved in [S].

PROPOSITION 5.5. Let C; € Ch,q; € L>*(Q), j=1,2. Then

i/(CH — Cy) - (w1 Vg — iV, )dz + / (C? - C2 + q1 — qo)uruzde
Q 0

== /89 %(A61741 - Adz,QQ)uldS

holds for the arbitrary u; solution of H@j oW = 0,j=1,2.
COROLLARY 5.6. Assume the conditions from the previous proposition. If A

Ci1,q1 =
A then

62742
(519) Z/(é1 - 62) . (u1V1Tg — TQVUle’ + / (612 — 622 +q1 — (]2)’LL1’LTQd£L' =0
Q Q
holds for the arbitrary u; solution of H(jj o= 0,j=1,2.
Proof of Theorem 1.1. Let k,~1,7v2 be three mutually orthogonal vectors € R"

with |y1| = |72] = 1. Let ¢, p € C™ be given by

(5.20) (=m+iy, p=sC+g(s,k)n,
where s is a positive real parameter and

(5.21) g(s, k) = 272 ((|k|* + 45%)Y/% + 45)7 1
Let p1, p2 € C" be given by

(5.22) p1 = zg +p, P2 =1i- —
We have

(5.23) pr-pr=p2-p2=0, p1+p2=ik, p1—p2=2p,
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(5.24) '0—1—>C, @—>—C, as s — 00.
s s

Let us construct solutions:

(5.25) uj(z, pj) = e"Ppa(x)Ap, (2, D)1 (z) (1 + wj(, pj))

which is the solution of H(;j,qjuj =0,j =1,2in Q, 1,92 € C°(R"),¢; = 1 in
Q,j =1,2, and wj,j = 1,2 satisfying

C
(5.26) lwillL2) < — and  [[Vwj|lgiq) < C

o

with C' depending only on €, ||C7j||C1(Q) and [|g;||Le(q),J = 1,2.
We now plug (5.25) into (5.19) to obtain

(5.27) F+G+H+I+J+K+L=0,

where I’ and G are functions of s, k, 71,72, and they are defined by

(528)  F=-2i / ¢ p - (Cr — Co) Ay, (. D) (t1) Ay, (z, D)) da,
Q

(5.29)
G =i [ Ay (z, D) (1) (V(Ap, (2, D)(91)) + V(Ap, (z, D) (1w2)))dz,

(5.30)
H = i[,e™* Ay (2, D)(1w1)(V(Ap, (z, D)(¥1)) + V(A (2, D) ($rw2)))da,

(5.31) I = —i [, V(A (z,D)(11))(Ap, (z, D)W1) + Ay, (z, D) (r1w2))da,
(5.32)
J = —i[q e V(A (z, D)(rw1))(Ap, (z, D)(¢1) + Ap, (2, D) ($rw2))dz,

K = fQ eix-k(612 — 622

(5.33)

a1 — q2)Ap, (z, D) (1) (Ap, (x, D) (Y1) + Ap, (z, D) (Y1w2))d,

L= fQ eix~k(612 — 6722

(5.34)

01 = ¢2) Ay, (2, D) (r1w1)(Ap, (z, D) (Y1) + Ap, (2, D) (1w2)) da.
We now apply (5.26) and Lemma (5.4) to get

H 1 K L
(5.35) limgzlim—:limf:limZ:Olim—:Olim—:O
s—00 8§ s—o0 S s—00 § s—00 8§ s—00 8§ s—00 8§
and then
F ; — - o
(5.36) lim — = —2i / elrktoiteze (O] — Ch)dx =0,
s§—0o0 S Q

where ¢; solves ¢ - Vo = —i¢ - C1 and ¢ - Vg = i¢ - Co.
(5.36) is all we need to end the proof of the theorem. The proof is finished
following Sun’s arguments. We refer to [Su] for details.
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LOCAL AVERAGE LIAPUNOV FUNCTIONS AND PERSISTENCE
IN POPULATION DYNAMICS*

W. H. RUANT

Abstract. This paper is concerned with the problem of uniform persistence in population
dynamics. We consider systems of reaction—diffusion equations which model ecosystems in bounded
habitats with diffusion. It is shown that a system is persistent if every chain-recurrent set in the
boundary of the positive cone does not attract trajectories from the interior of the positive cone,
and this property can be determined by using localized average Liapunov functions. Some results on
constructing local average Liapunov functions are given. A system describing a food chain model is
discussed as an example.
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1. Introduction. This paper is concerned with the uniform persistence of dy-
namical systems defined by systems of nonlinear partial differential equations of
parabolic type. We consider the following initial-boundary value problem:

Ou; /Ot — Liu; = w; fi(u), (xeQ, t>0),
(1.1) Biu; =0, (x€edQ, t>0), (=1...,N),
ui(z,0) = ug (z), (z € 9Q),
where 2 C R” is a bounded domain with a smooth boundary 09Q; u = (uy,...,un) is

a vector function with each component nonnegative; L; is a uniformly strongly elliptic
operator having the divergence form

(1.2) L= (aj(®)us,)a;, + > _ bi(2)ta,;
i,j=1 i=1

B; is a boundary operator such that

ou(x)
ov(x)

(1.3) Biu(z) = 6; + Bi(z)u,

where §; is either 0 (Dirichlet condition) or 1 (Neumann or Robin condition); f; is
a nonnegative function which is the constant 1 if § = 0; v(x) = (v1,...,Vy) is the
outward conormal vector at x € 0N with

n
ui:Zaij(w)g, izl,...,n;
j=1

and ¢ = (C1,---,Cn) is the outward normal vector at x € 9. It is assumed that
aij, by € CH(Q), B € C(99Q), uf € C(Q), f; € CHRT), and 9N € C'T*, where
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a > 01is a constant. Such a system often arises in the study of population dynamics of
ecological systems. Typically, {2 represents the habitat of several interacting species,
u; represents the density of the ith species (usually after scaling), f; describes the
effect of interaction among species on the growth rate of the ith species, and L; and
B; account for diffusion and migration of the ith species in the interior and on the
boundary of the habitat, respectively.

An important problem in ecology is to determine conditions under which all
species survive in the long term. In mathematical language, it is the problem of per-
sistence of the dynamical system. Let X; be a Banach space such that X; = Cy(Q) if
B; is the Dirichlet condition and

Xi = {U € Cl(ﬁ) : Blu = 0}

if B; is Neumann or Robin condition, and let X be the positive cone of the product
space vazl X;, ie.,

N
X:{UEHXZ': u; >0 forizl,...,N}.
i=1

It is a consequence of the maximum principle that X is forwardly invariant for the
semiflow 7 generated by system (1.1); that is, given any £ € X, the solution u(-,t) of
(1.1) with u® = ¢ lies in X for all t > 0. Furthermore, by the uniqueness of solution,
each face S; = {u € X : u; = 0} of the boundary of X is also forwardly invariant for
the semiflow, and so is the total face S = Ufil S;. The system (1.1), or equivalently
the semiflow =, is called persistent if for all £ € X \ S, liminf, ., d({nt,S) > 0, and
it is called uniformly persistent if there exists ¢y > 0 such that for all £ € X \ S,
liminf, o d(&nt, S) > € (cf. [4]). Here, d(-,-) is the distance function in X defined
by the norm, and &t is the solution u(-,¢) of problem (1.1) with u® = £. In the
case where the system is compact and point dissipative (the latter means there is a
bounded nonempty set B C X such that for any £ € X there exists a typ > 0 such
that {nt € B for all ¢ > t), a result of Hale and Waltman [11] shows that persistence
is equivalent to uniform persistent. This is true for many reaction—diffusion systems
modeling ecosystems, and hence in this paper, we only discuss conditions for systems
to be persistent.

The study of persistence of dynamical systems has attracted a considerable amount
of attention in recent years (cf., e.g., [3, 4, 5, 6, 7, 9, 11, 13, 14, 17] and references
therein). There are a number of important directions. One is to analyze the behavior
of invariant sets on the boundary S and determine conditions for the maximal invari-
ant set 1(.S) in S to be repellent to trajectories in X'\ .S. Recall that a set in X is called
invariant if it is a collection of full orbits, that is, orbits of solutions of (1.1) that are
defined for all ¢ € R. In view of Theorem 2.2 of [11], the maximal invariant set I(.5)
in S exists and attracts all trajectories in S provided that the system is compact and
point dissipative. It is found that if I(.S) has a finite covering by a family of isolated
invariant sets such that there is no cycle in the family and each invariant set does not
attract any trajectory from X \ S, then the system is persistent [3, 4, 9, 11]. Another
direction is to use the so-called average Liapunov functions. An average Liapunov
function is a continuous function P : X — R such that (i) P(§) > 0 for £ € X \ S,
and (ii) for each £ € I(S), there is ¢ > 0 such that

lim inf Pnrt) >
nex\s,n—¢ P(n)
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Whenever such a function exists, the system is persistent (cf. [13]). This method
has been applied to several Lotka—Volterra-type ecological models in [5, 6, 7, 13].
Sufficient conditions for the systems to be persistent are obtained by constructing
various such functions. It is the latter direction that we shall pursue mainly in this
paper, although our approach is closely related to the former.

Generally, a difficulty in using average Liapunov functions arises from its “global”
nature. To construct such a function, all the behavior of the semiflow on S must be
taken into consideration simultaneously. Thus the larger the maximal invariant set
I(S) of S is, the more difficult it is to construct the function. When the semiflow has a
complicated structure on S, the task of construction becomes overwhelming. Hence, it
appears that the method would be much improved if average Liapunov functions can
be used in a “local” sense, that is, not just one single global average Liapunov function
but a number of local functions, one for each member of certain decomposition of I(5),
so that collectively, they ensure the persistence of the semiflow. The goal of this paper
is to develop such a method. Let an average Liapunov function be defined only in
a neighborhood of an isolated invariant set in S, i.e., an invariant set in S which is
maximal in a neighborhood. We show that its existence ensures that the invariant
set does not attract any trajectory from X \ S. Since the smaller the invariant set is,
the easier the average Liapunov function can be constructed, the question becomes
to determine the smallest invariant sets such that if each does not attract trajectories
from X \ S, then neither does the entire face S. We show that the smallest of such
invariant sets are the isolated connected chain-recurrent sets in S. Recall that an
invariant set M is called chain recurrent if for each x € M and each £ > 0, there
exist points = xq, ..., &, = x and times ¢1,...,t, > 1 such that d(z;,z,_17t;) < &
[8]. Our results show that if the system is not persistent, then any trajectory starting
in X \ S which is attracted to S is actually attracted to a chain-recurrent set in S.
As a result, to show that the system is persistent, one needs to construct an average
Liapunov function for each connected component of chain-recurrent sets in I(.5).

The paper is organized as follows. In section 2, we investigate the behavior of
a trajectory of a general nonpersistent semiflow when it is attracted to S and show
that the trajectory is actually attracted to a chain-recurrent set. In the case where
the chain-recurrent set contains more than one equilibria, the trajectory will enter
and exit any small neighborhood of each point of the set infinitely many times, with
progressively slower pace. In section 3, we first show that for any isolated invariant set
in S, the existence of an average Liapunov function in a neighborhood of the invariant
set ensures that the invariant set does not attract any trajectory from X \ .S. We then
discuss the reaction—diffusion system (1.1) and show how the local average Liapunov
functions can be constructed. As a result, we give sufficient conditions for isolated
invariant sets in S not to attract trajectories from X \ S. The final section illustrates
the techniques with a food chain model of Lotka—Volterra type.

2. Behavior of trajectories attracted to S. In this section, we consider
nonpersistent systems and show that any trajectory attracted from X \ S to S is
necessarily attracted to a connected chain-recurrent set in S. As a result, we obtain
sufficient conditions for the system to be persistent by requiring that each isolated
connected chain-recurrent set in .S repels trajectories in X \ S. We also give sufficient
conditions for persistence in terms of Morse decompositions of the maximal invariant
set I(S) in S. Some other property of a trajectory when it is attracted to S in
a nonpersistent system will also be given. The results in this section are valid for
general dynamical systems.
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Consider a semiflow 7 in the metric space (X,d). Let S C X be a closed set
such that both S and X \ S are forwardly invariant for 7. Let also T'(t) : X — X
denote the semigroup defined by T'(t)z = znt for x € X and ¢ € RT. We impose the
following general assumptions:

(A) (i) The semiflow 7 is point dissipative in X [10].

(ii) There is a tg > 0 such that the semigroup T'(¢) is compact in X for
t>to.

In view of Theorem 2.2 of [11], the above condition (A) ensures that the semiflow
7 restricted to S has a compact nonempty global attractor I(S) in S. We further
assume the following:

(B) The maximal invariant set I(.S) in S is an isolated invariant set for 7 in X.

Let M C S be an invariant set for 7. We consider the situation when there is
x € X \ M attracted to M. By x being attracted to (resp., repelled by) M we mean
the w-limit set w(x) (resp., the a-limit set a(z)) is nonempty and is enclosed in M
(resp., a(x) C M). Recall that w(z) (resp., a(z)) is the set of all y € X for which
there is a sequence t,, — oo (resp., t — —00) as n — oo such that xwt, — y. The
set of all x attracted to (resp., repelled by) M is called the stable (resp., unstable)
set of M and is denoted as W?*(M) (resp., W¥(M)) (cf. [10]). For each z € X, we
let v7(z) = 270, Thax) and v~ (z) = 27 (Tin, 0] denote the forward and backward
semi-orbits, respectively. Here Ty (resp., Tmin) is the supreme of ¢ > 0 (resp.,
infimum of ¢ < 0) such that znt exists. One notes that for semiflows generated by
the PDE (1.1), v~ (x) may not exist or may not be unique. Finally, let N be an open
set of X; we say 7 does not explode in N if, whenever x € X and a7[0, Thax) C N,
Tmax = 00. The next result from Rybakowski [15] plays an important role in our
discussion.

PROPOSITION 2.1. Let M be an isolated invariant set and N be a closed isolating
neighborhood of M such that  does not explode in N. Let x € X be such that v*(x) is
bounded, w(x)NM # 0, and w(x)\ M # 0. Then there exist points z*, z* € IN Nw(x)
such that v (2z*) C N and all backward orbits v~ (z*) through x* are contained in
N.

Remark. By the invariance of w-limit sets, through any point y € w(x) a full
orbit y(y) = y7R exists. Hence by the compactness of w(x), both w(y) and a(y) are
nonempty. Since, by definition, M is the maximal invariant set in N, it is clear that
in the above proposition, w(y®) C M and a(y*) C M. That is, y* € W5(M) and
y* e WH(M).

Using this proposition, we can show that if z € X \ S has an w-limit point in 5,
then either z itself or some y € w(x) \ S is attracted to S.

COROLLARY 2.2. Suppose conditions (A) and (B) hold. If x € X \ S has a
bounded forward semi-orbit v (x), and w(x) NS # 0, then either w(x) C S, or there
isy € w(x)\ S such that w(y) C S.

Proof. Since, by assumption, y*(z) is bounded and T'(t) is compact, w(x) is
nonempty and contains only full orbits of the semiflow 7. Hence w(x) NS C I(9).
Suppose w(z) ¢ S. Then by assumption (B) and Proposition 2.1, for each isolating
neighborhood N of I(S), there is y € w(x) N ON such that the forward semi-orbit
~T(y) € N. This implies that w(y) C I(S) and there is a full orbit passing through y.
Hence we must have y ¢ S, because otherwise, by the invariance of S, the full orbit
~(y) must be contained in S, and hence y € I(S), contradicting y € ON. This proves
the existence of y € w(zx) \ S such that w(y) C S. O

The above result can be improved if we replace S by any isolated invariant set
M C S, which is a repeller in S. Recall that an invariant set M C S is called an
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attractor if it attracts all elements in a neighborhood of itself, and an invariant set
M’ C S is called a repeller dual to M if

M ={z€I(S): wlx)nM =0}

For an isolated invariant set M, an ordered finite collection of subsets D = {My, ..., M, }
in M is called a Morse decomposition of M if each member M; is invariant and if
each x € M either lies in a set My, or has its w(z) and a(z) enclosed in two distinct
sets M; and M;, respectively, with ¢ < j. The members of D are called Morse sets
(cf. [8]). The next theorem gives a result more general than Corollary 2.2. It shows
that if a repeller M has the Morse decomposition {My,..., M,}, and if z € X \ S is
such that w(x) N M # 0, then either z or some y € w(z) \ S must be attracted to one
of the Morse sets.

THEOREM 2.3. Suppose conditions (A) and (B) hold. Let M C S be an isolated in-
variant set of m which is a repeller in S (dual to an attractor). Suppose {My, ..., M,}
is a Morse decomposition of M in S, and suppose that there is an x € X \ S having a
bounded forward semi-orbit vt (x) and w(x) N M # 0. Then there is a Morse set M;
such that either x or some y € w(x) \ S is contained in W*(M;).

Proof. Assume by contradiction that such a Morse set does not exist. Let z €
w(z)N M. Then there is a Morse set M}, such that w(z) C My, and by the invariance
of w-limit sets, w(z) N My # 0. Let j be the maximum of the subscripts k such
that w(z) N My # (. Since, by assumption, z ¢ W#*(M;), Proposition 2.1 shows
that there is y € w(x) such that y ¢ M; and y € W*(M;). Again by assumption,
y ¢ X\ S. Since y € w(x) implies that there is a full orbit passing through y,
it follows that this orbit lies in S. Hence either a(y) ¢ M or there is i > j such
that a(y) C M;. The former contradicts the fact that M is a repeller. The latter
implies that w(z) N M; D a(y) N M; # 0, which contradicts the maximality of j. This
completes the proof. 0

Remark. Using a similar argument, one can show that the result of the theorem
holds if w(z) C M while M is not necessarily a repeller. The modification of the proof
is straightforward.

It is known that given two Morse decompositions D7, Dy of an isolated invariant
set M one can construct a third Morse decomposition D3 finer than both D; and
Dy. Let M(D;) denote the union of all the Morse sets in the decomposition D;.
Then necessarily, M (D3) C M(D1) N M(D5). It has been shown by Conley [8] that
the intersection of the unions of Morse sets over all Morse decompositions is a chain
recurrent set. This suggests that if there is © € X \ S which is attracted to S, then
x is actually attracted to a chain recurrent set in S. We show this result in the next
theorem.

THEOREM 2.4. Suppose (A) and (B) hold and suppose x € X \ S has a bounded
forward semi-orbit v (x) and satisfies w(x) NS # 0. Then there is an invariant set
C C S which is connected and chain recurrent for m in S such that either x or some
y €w(x)N(X\S) is contained in W*(C).

Proof. In view of Corollary 2.2, there exists ° € X \ S such that w(z®) C S, and
x® is either x itself or lies in w(x). Let R(S) be the maximal chain recurrent set of the
semiflow 7 restricted in I(S). According to [8], in every neighborhood of R(S), there
is a Morse decomposition D in S such that the union M (D) of the Morse sets is in that
neighborhood. Choose a decreasing sequence €, — oo and a corresponding sequence
of Morse decompositions { D"} such that M (D™) lies in the e,-neighborhood of R(S).
By using intersections of Morse sets, we may assume without loss of generality that
D™ becomes finer as n increases.
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We select a decreasing sequence of Morse sets M™ € D™ and a precompact se-
quence of points z, € X \ S such that w(z,) C M™ as follows. Let N be a fixed
isolating neighborhood of I(.S) in X. By either reducing N or following the trajectory
from z* if necessary, we may assume z® € JN. Without loss of generality, we may
also assume that M (D') C N. Applying Theorem 2.3 to x* and D, we see that there
is an 1 € X \ S such that w(xy) € M* for some M* € D!, and z; is either 2° or lies
in w(x®). We show that z; can be chosen on ON. Indeed, if 1 = 2°, we already have
x1 € ON. If 1 € w(z®), then by the invariance of w-limit sets, there is a full orbit
~(x1) passing through z;. Since 27 ¢ S and since N is an isolating neighborhood of
I(S), it follows that v(z1) ¢ N. Using the fact that w(z1) C M C I(S), one sees
that there exists ¥} € vy(x1) such that 2} € N and w(z}) € M. We can then choose
x) to replace 7.

Next, assume that there exist Morse sets M* € D* and points x;, € N \ 9,
k=1,...,n, such that

M'S>M?2>...>M"

and w(zy) C M*. Assume also that each mzj, is either z° or lies in w(z®). It is
ecasy to see that the intersections of M™ with the Morse sets of D™*! constitute a
Morse decomposition of M™. Hence, in view of the remark following the proof of
Theorem 2.3, there exist a Morse set M™+! € D"*! and a point ZTnt+1 € X \ S such
that M"*! ¢ M"™ and w(z,41) C M™*L. Furthermore, z, 1 is either the same as
x, or lies in w(x,). By the transitivity of w-limit sets, we see that x,.1 is either
the same as z* or lies in w(z®). Finally, using a similar argument in the preceding
paragraph, x,,,1 can be chosen to lie on dN. This completes the induction, and also
the construction of sequences {M"} and {z,}.

Let C =(,—; M". Then clearly, C is invariant and chain recurrent for m in S.
By the compactness of w(x?®), we see that there exists a convergent subsequence {z,}
of {z,} such that

lim z,, =y € ON.

We show that w(y) C C and y is either x itself or lies in w(z) \ S. First observe
that by the construction of {z,}, for each fixed n’ and each k > n/, z}, is either z,,
itself or lies in w(z, /). Hence by the closedness of w-limit sets, the same is true for y.
This implies that w(y) € M™ for all n’, which leads to w(y) € C. Next, since each
Xy, is either x*® itself or lies in w(x?®), and x* is either x itself or lies in w(z), by the
transitivity, the same is true for y. In the case where y € w(x), there is a full orbit
passing through y. Since y € N implies that y ¢ I(5), it follows that y ¢ S. Finally,
since w(x) is connected, in case C' is not, we may simply replace C' by a component
containing w(z). This completes the proof. 0

The above Theorems 2.3 and 2.4 lead to the following results for the persistence
of the semiflow.

COROLLARY 2.5. Let conditions (A) and (B) hold. Then the semiflow m is persis-
tent if either (1) I(S) has a Morse decomposition {M, ..., M,} such that W*(M;) N
(X\S)=0fori=1,...,n, or (ii) each component C C I(S) of the chain-recurrent
set of min S satisfies W*(C) N (X \ S) = 0.

Proof. Suppose by contradiction that 7 is not persistent. Then there is z € X \ S
such that y*(z) is bounded and w(z) NS # (. In view of Corollary 2.2, we may
assume w(x) C S without loss of generality. Suppose I(S) has a Morse decomposition
{My,...,M,}. Then since I(S) is a repeller in S (dual to (}), Theorem 2.3 with
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M = I(S) asserts that there is a Morse set M; attracting trajectories from X \ S.
Hence condition (i) does not hold. Also, since by Theorem 2.4 there is at least one
connected chain-recurrent set of 7 in S attracting trajectories from X \ S, we see that
condition (ii) does not hold either. This completes the proof. O

By Theorem 2.4, if any z € X \ S is attracted to S it is actually attracted to
a chain-recurrent set C' C S of the semiflow. In the case when w(x) contains more
than one equilibrium point, we can show that the trajectory through = will visit any
neighborhood of each point of w(z) infinitely many times, with increasingly slower
pace, provided that each equilibrium itself does not attract any trajectory from X\ S.
More generally, we have the following theorem.

THEOREM 2.6. Suppose (A) and (B) hold and suppose C' C S is a connected chain-
recurrent set of ™ in S such that for each equilibrium e € C, WS(e) N (X \ S) = 0.
Let x € W*(C)N (X \S), and let y € w(x). Suppose there exists an equilibrium
y # y such that y' € w(x). Then for each T > 0 there exist constants € > 0 and
T3 > Ty > Ty > Ty > 0 such that xnTy € N.(y), anT3 € N:(y), xnt ¢ N.(y) for
te [Tl,TQ], and To —T7 > T.

Proof. Let {t,} and {t/,} be sequences tending to co such that x7t, — y, xwt, —
y', where ¢ is an equilibrium. Choose ¢ sufficiently small so that the e-neighborhoods
N.(y) and N.(y') of y and y' are disjoint. Then for large n, xnt, € N.(y) and
art, € N.(y'). By taking subsequences and relabeling them, we may assume that for
all n, t, <t} <tpt1. Define

sp=sup{t: t, <t <tpy1, zw[t,,t) C N(y')}.

It follows that ¢,, < ), < s, < tpt1, z7[t],, sn] C Ne(y') for all n, and zws,, € ON:(y').
In particular, znt ¢ N.(y) for ¢t € [t),, s,]. We assert that s, —t/, — 00 as n — oo.
For if not, by choosing subsequences, we may assume without loss of generality that
S$p —t, — ¢ € RT and x7ws, — y” € ON.(y') as n — oco. However, since ¢y’ is an
equilibrium, it follows that xzms, = ant, w(s, —t,) — y'mc = y'. This contradicts
y" € ON:(Y').

Now, choose n large so that s, —t!, > T. We see that for Tp = t,,, Ty = t,, To = sy,
and T3 = t,,11, the conclusion of the theorem holds. 0

3. Local average Liapunov functions. In view of Theorems 2.4 and 2.6, to
determine the persistence of a semiflow 7, we need to examine a family of subsets
of I(S) and show that each member of the family does not attract trajectories from
X \ S. The family can be either a Morse decomposition of I(S) or the collection of
connected chain-recurrent sets of 7 in S. In this section, we show how the existence
of an average Liapunov function defined in a neighborhood of an isolated invariant
set in S ensures that the invariant set does not attract trajectories from X \ S. Our
approach in this section follows that in Hutson [13].

Let M C S be an isolated invariant set for m and let N be an isolating neighbor-
hood of M in X. We say that a continuous function P: N — R is a (local) average
Liapunov function in N with respect to S if

(i) P(z) >0forx € N\ S,

(ii) for each x € M there is t > 0 such that liminf,en\ g, y—o P(y7t)/P(y) > 0.
Define a function Q(x,t) for x € N and ¢t > 0 by

P(znmt)/P(x) reN\S,
(3.1) Q1) =

liminf P(ynt)/P eNNS.
Jenminf P(yrt)/Py) @
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Then part (ii) of the definition of P is equivalent to saying that for each x € M there
is t > 0 such that Q(z,t) > 0. It is easy to see that Q(:,¢) is lower semicontinuous.
This is obvious if z € N\ S. Suppose x € NN S. Let £ > 0. Then there is § > 0 such
that

Qy,t) = P(yrt)/P(y) > Q(x,t) — ¢

for all y € N\ S, d(z,y) < . Hence for any z € N NS with d(z,z) < §, we have
Q(z,t) > Q(z,t) — e. This proves the semicontinuity of Q(-,t) at x.

In the next theorem, we use functions P and @ to give a sufficient condition for
M not to attract any trajectory from X \ S.

THEOREM 3.1. Let the condition (A)(ii) hold. Suppose M C S is an isolated
inwvariant set of m in X, and suppose that there exists an average Liapunov function
P defined in a neighborhood N D M with respect to S. If for each x € M there is
t > 0 such that Q(z,t) > 1, then W5(M) N (X \ S) = 0.

Proof. Since the function Q(z,t) is lower semicontinuous, it follows that for each
h >0 and t > 0, the set

(3.2) Uh,t) = {z € N°: Q(z,t) > h}

is open. (Here N° is the interior of N in X.) Clearly U(h,t) is monotone for any
fixed t, i.e., U(hy,t) D U(he,t) if hy < hg. Using the assumption that for each
x € M there is t > 0 such that Q(z,t) > 1, we see that M is covered by the family
{U(h,t) : h > 1, t > 0}. Since M is compact by the assumption (A), there exist
ho > 1 and tq,...,t, > 0 such that

McU=JU(hots).

i=1

It is clear that U C N and is open in X.

Suppose now by contradiction that there is y € X \ S such that w(y) C M. Then
there exists T' > 0 such that ynt € U for all t > T'. Use a translation in ¢ if necessary;
we may assume that y € U. Let t = max(ty,...,t,) and £ = min(¢y,...,t,). Then
given any t > 0, there is t < 7 < t such that

P(ym(t+ 7)) > hoP(ymt).

Repeated use of this inequality and the fact that P(y) > 0 shows that there is a
sequence {7,} — oo such that P(ynr,) — co. However, since w(y) C M, by choosing
a subsequence if necessary, we may assume that {ym7,} converges to a point in M.
Hence by the continuity of P, the set { P(ym,)} is bounded. This contradiction shows
that such y does not exist. ]

The conditions in Theorem 3.1 can be relaxed as follows. Let M, be the closure
of the set (J,c,, w(x). Then instead of requiring Q(x,t) > 1 for each x € M and a
corresponding ¢t > 0, it suffices to require that the inequality be satisfied in M, only.
This is shown in the next theorem.

THEOREM 3.2. The conclusion of Theorem 3.1 remains true if there exists an
average Liapunov function P defined in a neighborhood N O M with respect to S
such that for each © € M,,, there is t > 0 for which Q(z,t) > 1.

Proof. We first show that for any x € M and any ty > 0 there is a 7 > ¢y such
that Q(x,7) > 0. Let U(h,t) be the open set defined in (3.2). Since P is an average
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Liapunov function, it follows from part (ii) of the definition that for each x € M
there is ¢ > 0 such that Q(z,t) > 0. Hence M is covered by the family of open sets
{U(h,t) : h > 0,t > 0}, and by the compactness of M, there exist hg > 0 and
ti,...,t, > 0 such that

MCUEUU(ho,ti)CN.

=1

Clearly U is a neighborhood of M in X. Let t = max(¢1,...,t,) and t = min(ty,...,t).
We choose an integer k such that kt > ¢y, and a neighborhood N(z) such that

N(z)7[0,kt] C U. Then for any y € N(z)\ S, there exist 0 =19 <71 < -+ < 7% < kt

such that ¢t < 7; <t and P(yn7;) > hoP(yn7i—1) for i = 1,..., k. This implies that

P(yn7y) > hEP(y) for ally € N(x)\ S. Hence Q(x,71) > hf > 0. Since 73, > kt > to,

the assertion is proven with 7 = 7.

We now show that the condition of Theorem 3.2 implies the condition of Theo-
rem 3.1. That is, we show that for each x € M there is a ¢t > 0 such that Q(z,t) > 1.
It is clear that M, is a closed subset of the compact set M. Since by the assumption
of the theorem M, is covered by [, 50 U(h,t), it follows that there is a finite
covering

M,cU = U U(hl,ti),
i=1

where hy > 1 and t4,...,t,, are positive constants. Thus U; is an open neighborhood
of M, in X. Let t/ = max(¢1,...,tm). Suppose x € M. Then there exist ¢y and 7 such
that to < 7, xwt € Uy for all ¢ > tp, and Q(x,7) = 6 > 0. Choose an integer v such
that h76/2 > 1, and choose a neighborhood N(z) of x such that N (z)x[r, 7+vt'] C Uy
and

(3.3) P(ynt)/P(y) > 6/2 for y € N(z).

Then for each y € N(z), we have z = yn7 € Uy and 2zn[0,vt'] C U;. This implies that
there exist 0 = 79 < 71 < -+ < 7, < vt’ such that 7; <t and P(z77;) > hi P(27m7i—1)
fori =1,...,v. Therefore, by (3.3),

P(ym(t 4+ 71,)) = P(znt,) > h{P(z) = h{ P(ynt) > h7(6/2)P(y).

This leads to Q(z,t) > h¥6/2 > 1 for t = 7+ 7,. The assertion is proven.

The conclusion of the theorem follows now from Theorem 3.1. 0

In the remainder of this section, we consider the system (1.1) of parabolic partial
differential equations. We present certain techniques of constructing local average
Liapunov functions and use them to obtain conditions for an invariant set not to
attract trajectories from X\ S. In the following, X is the positive cone of the product
space Hf\;l X; where X; = Cp(Q2) if B; is the Dirichlet condition and

Xl' = {U € Cl(ﬁ) : Biu = 0}

if B; is Neumann or Robin condition, and S = Uf\il S; is the union of the faces
Si ={ue X : u; =0}. It is clear from the uniqueness of the solution of (1.1) that
each face S; is forwardly invariant for the semiflow 7 generated by (1.1). Hence S is
also forwardly invariant.
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We first use eigenfunctions of adjoint operators to construct average Liapunov
functions. For i =1,..., N, let L} and B} be the adjoint operators corresponding to
L; and B; given by (1.2) and (1.3), i.e.,

n n

Liu= Z (@ijua; )e; — zn:bluf’?? - “Z(bi)“f”
i=1

ij=1 i=1
oo Ou(x) N
Biu=4é; ov*(z) + (61 ;bzg + ﬁ) U,

where v* = (1], ..., ;) is the adjoint conormal vector at = € 9Q with v = 377" | a;;¢;.

A simple computation shows that

(3.4) / vLudr = / uLfvdx if Bu= B*v=0.
Q Q

Let ¢ be a positive function that satisfies the relation
(3.5) Lio=g(@)p (x€Q), Blo=0 (ze00)

for some function g. Define the function P : X — R by

(3.6) f%@:=/ga¢dm

Then P(§) > 0 for all € € X \ S; and

P Ig’igﬁ) = exp (m /Q oui(z,t) dz — In /Q dui(z,0) dm)

B bl duig(, 7) da
‘“%okmmnmm)

where u = (ug,...,uy) is the solution of (1.1) with u(z,0) = £ and u;, is the partial
derivative of u; with respect to t. Since by (1.1) and (3.4),

(3.7)

/ (bui,t dr = / ¢(Lzuz + uzfl(u)) dx
Q Q

(3.8) =Ammw+mwwmm

> Co/ u; dx,
Q

where ¢g = infyeq{g(x) + fi(u(z,t))}, it follows from the definition of Q(z,t) in (3.1)
that Q(&,t) > exp(cp) > 0 for all £ € X and ¢ > 0. This shows that P is a local
average Liapunov function for = with respect to S;. It is clear that for any constant
a > 0, the function P® is also a local average Liapunov function with respect to .S;.
Using this construction and Theorem 3.1 we obtain the following result.

THEOREM 3.3. Let M C S; be an isolated invariant set of m. Suppose the semiflow
defined by (1.1) satisfies the condition (A)(ii), and suppose that there exists a function
¢ > 0 that satisfies the relation in (3.5) for some function g such that g(x) > — f;(§)
for all ¢ € M and x € Q. Then W*(M) N (X \ S;) = 0.
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Proof. Let P be defined by (3.6). As it is shown above, P is a local average
Liapunov function of 7w with respect to .S;. Let @ be the corresponding semicontinuous
function defined by (3.1). Then by (3.5) and (3.7),

Q& t) = liminf P(nnt)/P(n) > e for £ e M, t >0,
neEX\Si;n—¢

where ¢p = infyeq cem{g(z)+ fi(€)}. Since by the assumption of the theorem ¢ > 0,
it follows that Q(&,t) > 1. The conclusion of the theorem now follows from Theo-
rem 3.1. O

Remark. Since by the Fredholm alternative and the Krein—Rutman theorem prob-
lem (3.5) has a positive solution if and only if the problem

(3.9) Ly =g(x)y (x€Q), By =0 (ze€dQ)

has a positive solution, the conclusion of Theorem 3.3 is valid if equation (3.5) is
replaced by (3.9).

In the case when M = {u’} C S; is a singleton, the attractivity of u® to X \ S is
described by the eigenvalue problem:

(3.10) Ly + f;(u®) = M (z € Q), By =0 (x€0Q).

As a special case of Theorem 3.3, we have the following result.

COROLLARY 3.4. Let u® € S be an isolated equilibrium of ™ which also constitutes
an isolated invariant set of  in X. Then W*(u®)N (X \ S) = 0 if problem (3.10) has
a positive eigenvalue for some i € {1,..., N} such that u° € S;.

Proof. Suppose problem (3.10) has a positive solution ¢ for some A > 0. Then
the function g(x) in (3.9) satisfies

g9(@) = —f(u’) + A > —f(u”).

Hence by Theorem 3.3, the conclusion follows. O
More complicated average Liapunov functions can be constructed as follows. Sup-
pose P; and P, are two functions defined by

(3.11) Pl(f):/ﬂfilébldm, Pz(f):/ﬂfzg@d%

where i1, i € {1,...,n} and ¢;, ¢y satisfy the relation

Lip1 =gi(x)p1 (x€Q), Bjo1=0 (vecd),
Li, 2 = g2(w)p2 (7 € Q), Bi g2 =0 (x€09Q),

for some functions g; and go.

THEOREM 3.5. Let Py and Py be defined by (3.11) and let ay, aa, 61, 82 be positive
constants. Then (i) the function P P32 is a local average Liapunov function of w
with respect to S;, US;,, and (ii) the function 61 Py +62P5? is a local average Liapunov
function of m with respect to S;, N .S;,.

Proof. (i) Let P = P{** P32, Then clearly, P(§) > 0 for £ ¢ S;; US;,. Let Q be the
semicontinuous functions defined by (3.1) and let @1 and @2 be defined similarly with
P replaced by Py and Ps, respectively. Then by taking limit-infimum, @ > Q7" Q52.
Since Q1(&,t) > 0 and Q2(£,t) > 0 for all £ € K and t > 0, the same is true for Q.
This proves that P is a local average Liapunov function with respect to S;, U S;,.
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(ii) Let P = 61 P + 62 P35 and let £ € K\ (S;; N S;,). Suppose u(t) = {nt for
t > 0. Then, by computation,

P(ént)/P(§) = exp (In(P(ént)) — In(P(€))) = exp (In(P(u(t)) — In(P(u(0)))))
exp ( /0 Plu(r)) /P(u(T))dT> ,

where P is the derivative of P(u(t)) with respect to ¢ along the trajectory. Using the
definition of P; and Py in (3.11), we compute

a;—1
P(U(t)) = 0101 /Q P14, ¢ dx (/Q P14, dx)

az—1
+ 52042/ Do, d (/ D2Ui, d33> )
Q Q

where u;, + and u;, ; are the respective partial derivatives of u;, and w;, with respect
to t. Following the derivation in (3.8), we have

/ Grli, ¢ do > Ck/ oruy, dx
0 Q

with the constants
o = inf {g(a) + fiu (u(w 1)}, k=12,

Thus, by letting ¢y = min{ay¢1, ages}, it follows that

a2

P(u(t)) > b ( ¢1ui1 dl‘) " + daaiaCo ( ¢2ui2 d.]?) > CQP(u(t)).
Q Q

Hence by dividing P(u(t)) and taking limit-infimum, we arrive at
Q& 1) > e >0 for all ¢t > 0.

This proves the part (ii) of the theorem. 0

In the case where I,(S), the closure of the set Uyecsw(x) is a finite set, we give a
condition for the system to be persistent. It is clear that in this case, each member
u? of I,,(S) is an equilibrium of the system, and there is i € {1,..., N} such that
u/ € S;. An equilibrium v is said to be chained to another equilibrium w’ if there
exists a connecting orbit from u’ to u?. A finite sequence u™, ..., u’ is called a cycle
if u"t = u’ and u% is chained to u%+! for j = 1,...,k. We show that the system is
uniformly persistent if the following conditions are satisfied:

(C) (i) The set I,(S) = {u/} contains no cycle.

(i) At each equilibrium u?, there is i € {1,..., N} such that v/ € S; and
problem (3.10) has a positive eigenvalue.

THEOREM 3.6. Suppose the system (1.1) satisfies conditions (A) and (B) and
suppose that I,,(S) = {u’} is a finite set which satisfies condition (C). Then the
system defined by (1.1) is uniformly persistent.

Proof. Since I,(S) is a finite set and contains no cycle, its members constitute
a Morse decomposition D for the invariant set I(S). Rearranging the subscripts if
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necessary, we may assume that D = {M,..., M, } with M; = {u/} for j =1,...,n.
In view of Theorem 2.3, the semiflow 7 is uniformly persistent with respect to S if
We(w) N (X \ S) = 0 for each j € {1,...,n}. This condition is ensured by the
assumption (C)(ii) and Corollary 3.4. 0
Finally, we comment that for the semiflow generated by the parabolic system
(1.1), the condition (A) is the consequence of the following conditions:
(D) (i) Uniform boundedness. Given a > 0, there exists a constant B(«)
such that ||[u®]|s < « implies that the solution u(z,t) of (1.1) satis-
fies ||u(+,t)||co < B(a) for all ¢ > 0.
(ii) Dissipativity in L>°. There exists a positive constant 4 such that for
each u® € X, there is a ¢ty > 0 such that

||u<7t)||oo S'Y for alltZtO

Here || - ||oo is the L norm. This result is essentially Theorem 3.3 in Cantrell,
Cosner, and Hutson, [6], although in [6] the differential operators L; are restricted
to the type pu; A, where p; are positive constants and A is the Laplacian, and the
boundary conditions are either the homogeneous Dirichlet type or the homogeneous
Neumann type. The proof is valid for the more general (1.1). Furthermore, condition
(D) can often be deduced by the comparison principle and the method of upper and
lower solutions, as the example in the next section shows.

4. A food chain model. In this final section, we discuss a Lotka—Volterra food
chain model of three species as an illustration of the results obtained in the previous
sections. For the sake of simplicity, we assume that the diffusion coefficients for all
three species are identical and the interacting mechanisms are also identical. The
analysis for the general case is similar, but lengthy. Our model has the form
Ouy /0t — dAuy = ug(a — ug — bug + cus)

Oug /Ot — dAug = us(a + cug — ug — bug) (xeQ),
Oug /0t — dAuz = uz(a — buy + cug — u3)

BU1 = B'LLQ = BU3 =0 (I’ S BQ),

(4.1)

where a, b, ¢ and d are positive constants, 2 C R” is a bounded domain with a smooth
boundary 02 € C'* for some a > 0, and

9]
B=$§ % + B(z),
where § is either 0 or 1, 8 € C'T%(9Q) is a nonnegative function such that g = 1 if
6 =0, and v is the outward normal vector on 92. We consider two cases. In the first
case, the system has semitrivial solutions with two positive components. Hence, when
one species is absent, the other two may coexist. In the second case, the system has
no semitrivial solution with two positive components. Thus if one species is absent,
one of the others cannot survive. We will see that in this case, the three semitrivial
solutions (each has only one positive component) form a cycle. For each case, we use
local average Liapunov functions to obtain conditions for the system to be persistent.
Our basic assumption for this section is

(4.2) a>X, 0<e<l,
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where )\ is the principal eigenvalue of the problem
—dAY =X (xz €Q), By =0 (xe€09Q).

The next lemma gives the compactness and dissipativity of the semiflow.
LEMMA 4.1. Suppose a, ¢, and d are positive constants, b is a nonnegative con-
stant, and ¢ < 1. Then the semiflow m generated by the system (4.1) satisfies condition

(A).

Proof. In view of the remark at the end of the preceding section, it suffices to
verify condition (D). Let o be a positive constant, and let u(z,t) be a solution of
(4.1) with ||u®||oc < a. We choose the constant M = max{a,a/(1 — c)} and let
Yy = (y1,¥2,ys) be the solution of the system
y1 =y1(a—y1 + cys),

Yy = y2(a+ cyr — y2),
ys = ys(a + cyz2 — ys),
y1(0) = y2(0) = y3(0) =

It is easy to see that the functions y and 0 = (0,0,0) form a pair of ordered upper
and lower solutions for the problem (4.1) (cf. [16, Chapter 8]). Hence

(4.3)

(4.4) 0 < wui(z,t) < yi(t) for (z,t) € Q x (0,00), i =1,2,3.

On the other hand, due to the symmetry of (4.3), y1, y2, y3 are identical and they
solve the scalar problem

Y =yla—(1-c)y), y(0)=M.

Since by assumption ¢ < 1 and M > a/(1 — ¢), it follows that y;’s are monotone
nonincreasing in ¢ and have the limit a/(1 — ¢). Thus by (4.4), ||u(:,t)]|cc < M for all
t >0, and

lim sup [[u(:,)[[oc < a/(1 = c).
t—o0

This proves the fulfillment of condition (D), and hence (A). a

We next identify the equilibria on the boundary of the positive cone. The system
clearly has a trivial solution 0. A spectral analysis shows that it is unstable. Since
by assumption a > A, it is well known (cf. [2]) that the problem

(4.5) —dA¢ =pla—¢) (x€Q), Bp=0 (xze€dQ)

has a unique positive solution ¢. Hence problem (4.1) has three semitrivial solutions
d; = (¢,0,0), P2 = (0,9,0), and P3 = (0,0,¢). A spectral analysis shows that all
are unstable. To determine the existence of a semitrivial solution with two positive
components, we consider the two-component system

ou/ot — dAu = u(a — u — bv)

(4.6) Ov /Ot — dAv = v(a + cu — v)
Bu=Bv=0 (x € 09).

(z € ),

Let Ao(p) denote the principal eigenvalue of the problem
(4.7) —dAY +pp =X (z€Q), By =0 (xe€00),
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where p is a continuous function. It is easy to see that whenever problem (4.6)
has a positive steady-state solution (us,vs), then a > Ag(bvs) (see [2]). Since the
principal eigenvalue Ag(p) is monotone increasing in p (which can be easily seen from
the variational formulation of the principal eigenvalue), it follows that a necessary
condition for the existence of a positive solution is a > A\o(0) = Ag. The next lemma
shows that another necessary condition is b < 1.
LEMMA 4.2. Suppose a > Ao and b > 1. Then
(i) every solution (u,v) with u(z,0) > 0, u(x,0) # 0, and v(z,0) = 0 converges
to (¢,0) as t — oo;
(i) every solution (u,v) with u(xz,0) > 0, v(z,0) > 0, and v(x,0) £ 0 converges
to (0,9) as t — co.
In each case, the convergence is uniform for x € ).
Proof. Consider the scalar problem

(4.8) 0z/0t —dAz=z(a—p—2) (ze€), Bz=0 (x€09),

where p is a smooth function. It is well known that if a < Ag(p), then all nonneg-
ative solutions converge uniformly to 0, and if a > Ag(p), then each solution z(z,t)
with z(z,0) > 0, z(x,0) # 0 converges uniformly to the unique positive steady-state
solution z4 (cf. e.g., [16, Chapter 8]). Part (i) of the lemma is a consequence of this
result with p = 0 and z; = ¢. We prove part (ii) of the lemma as follows.

We first show that the steady-state solution (0, ¢) of (4.6) is asymptotically stable.
The eigenvalue problem with respect to (0, ¢) is

dAE + (a — bY)E = A€
(x € Q),
(4.9) dAN + cPpé + (a — 2¢)n = A\
BE=Bn=0 (z € 00).

Since ¢ is a positive solution of (4.7) with A = a and p = ¢, it follows that a = Ao (¢).
Thus by the monotonicity of A\g(-) and the assumption b > 1, we have a < Ag(bo)
and a < A\p(2¢). This implies that the first equation has a nontrivial solution only
for some A < 0, and so does the second equation with £ = 0 to have a nontrivial
solution. Hence all the eigenvalues of (4.9) are negative, which implies that (0, ¢) is
asymptotically stable.

Let wg be the w-limit set of the trajectory starting with (u(-,0),v(+,0)). It is well
known for the Lotka—Volterra system (4.6) that any trajectory with a nonnegative
initial condition has a connected, compact w-limit set in the positive cone of the
Banach space X2, where X = Cy(f2) if B is of Dirichlet type and X = C1(Q) if B
is of Neumann or Robin type. To show that the solution (u(-,t),v(:,t)) converges
to (0,¢), it suffices to show that (0,¢) € wy. Because this would ensure that the
trajectory will enter any small neighborhood of (0,¢) in finite time. Thus by the
asymptotic stability, the trajectory must be attracted to (0, ¢).

We first show that for each (u*,v*) € wg the inequalities

(4.10) u*(z) < ¢o(x), v*(x) > d(x) (x € Q)

hold. To see this, let @(x,t) and ¥(xz,t) be solutions of (4.8) with p = 0 such that
(z,0) = u(x,0) and 0(x,0) = v(z,0). Then since u and v are nonnegative, it
follows from the comparison principle (cf. e.g., [16, Theorem 2.3 of Chapter 4]) that
u(z,t) < a(z,t) and v(z,t) > O(x,t) for all z € 2, ¢ > 0. Since by the assumption
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of the lemma Ag(0) < a < Ag(bg) and v(z,0) £ 0, we have lim;_, o, (-, t) < ¢, and
lim;_, o 9(+, ) = ¢ uniformly in Q. This proves (4.10).

Next, we let (u*(x,t),v*(z,t)) be a solution of (4.6) with (u*(-,0),v*(-,0)) € wy
and show that (u*(-,t),v*(-,t)) — (0,¢) as t — oco. Once this is shown, then by
the invariance of w-limit sets, it is necessary that (0,¢) € wp, which completes the
proof of part (ii) of the lemma. Let @(z,t) be a solution of (4.8) with p = b¢p and
@(z,0) = u*(x,0). Since by invariance (u*(-,t),v*(-,t)) € wp for all £ > 0, it follows
from (4.10) that

(4.11) u*(z,t) < P(x), v*(x,t) > d(x) forall z € Q, ¢ > 0.

Hence, by the comparison principle, a(x,t) > u*(z,t) for all x € Q and t > 0. Using
the relation a < Ag(bp) we see that @(-,¢) — 0 as t — oo, uniformly in Q. Hence
u*(+,t) — 0. To find the limit of v*(-,¢), we observe that for any € > 0, there is T > 0
such that cu*(x,t) < e for all z € Q and ¢t > T. Let 0(x,t) be a solution of (4.8) with
p = —¢ and 9(x,0) = v*(x,T). Then by the comparison principle, #(-,t —T) > v*(-,t)
for t > T. Since by the monotonicity of the principal eigenvalue A\o(-),

a > )\0(0) > )\0(*6),

it follows that o(-,t) — ¢. as t — oo, where ¢, is the positive solution of problem
(4.5) with a replaced by a + €. This leads to v*(x,t) < ¢.(z) for ¢ sufficiently large.
Moreover, by the continuity of the solution of (4.5) with respect to a, ¢. — ¢ as
¢ — 0T. Hence, we have

limsup v*(z,t) < ¢(x) for all z € Q.

t—oo

This, together with (4.11), shows that v*(-,¢) — ¢. The proof is complete. d

Remark. Tt can be shown using the degree theory that a sufficient condition for
problem (4.6) to have a positive solution is a > Ag and b < 1.

Case 1: when there exist semitrivial solutions with two positive components. We
show below that if a > Ag, ¢ < 1, and b(1 + ¢) < 1 then the system is persistent. To
prove this, we first find a priori bounds for the invariant sets of the system in S. This
is done by using upper and lower solutions. Let (@, ?) and (@, ) be smooth functions
satisfying the inequalities

a>a>0, ©>9>0,
and
—dATG > a(a — 0 —bb), —dAT> (a4 cu— D),
o o o . (z € Q)
—dAG < a(a— 4 —bv), —dAD <d(a+ ct— D),
Bi>0>Bi, Bi>02> B (z € 0Q).

It is well known that any solution (u,v) of (4.6) with the initial condition
a(z) <u(z,0) <a(z), o(z)<ov(z,0)<o(x) (x € Q)
satisfies

w(z) <wulz,t) <alz), () <v(zt) <o(x) (z e, t>0).
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Furthermore, there exist functions (@, 7) and (u,v) satisfying the relations
t<u<u<a, P<v<v<v inQ
such that

w(x) < liminf; o u(z, t) < limsup, . u(z,t) < u(z),
(x €Q).

v(z) < liminf; o v(z,t) <limsup,_, . v(z,t) <T(x)

In fact, (u,?) and (u,v) form a “quasi-solution” of problem (4.6) in the sense that
they satisfy

—dAT =u(a—u—bv), —dAT=7(a+ cu—7), (e Q)
€
(412)  —dAu=u(a—u—b), —dAv=uv(a+ cu—v), !
Bu=Bu=0, Bu=Byu=0 (x € 09)

(see Theorem 4.2 of Chapter 8 in [16]). The next lemma gives upper and lower bounds
of these functions.
LEMMA 4.3. Suppose a > g, b(1+¢) <1, 4 # 0, and © #Z 0. Then the inequalities

(I-b-bo)p<u<u<o, ¢<v<v<(l+c)p

hold for x € Q.

Proof. Since by assumption % and ¥ are nonnegative functions and none of them is
identically zero, it follows from the maximum principle that w and v are both positive
functions in €. Using the comparison principle to equations (4.5) and (4.12), we see
that v > ¢ and T < ¢. On the other hand, since the function £ = (1 + )¢ satisfies

—dAE = &(a+ pd —€) (z €Q),
BE=0 (z € Q)

for any p € R, it follows again from the comparison principle that 7 < (1 + ¢)¢.
Finally, since u > 0 in 2, by comparing the above equation with (4.12), we have
4 > (1 —=b(1+¢))¢p. This proves the lemma. 0

Lemma 4.3 and Theorems 2.4 and 3.3 lead to the following persistence result.

THEOREM 4.4. Suppose a > Ao, ¢ < 1, and b(1 + ¢) < 1. Then system (4.1) is
uniformly persistent.

Proof. Let My be the maximal invariant set of the semiflow 7 in the region

{fur =0, (1—b—bc)p <uy < ¢, ¢ <ug < (L+c)p} C Sy

We show that W#(M;)N(X\S) = 0. First observe that by assumption, 1—b—bc > 0;
we have M1 N (S2US3) = 0. Thus the relation is equivalent to W*(M7)N (X \ S1) = 0.
In view of Theorem 3.3, we need only to find a function g(x) with the property that
(1) g(x) > —a + buy — cug in Q for all uy and uz such that (0, usz,us) € M;, and (2)
the problem

dAY = g(z)y  (z € ), Byp=0 (ze€dQ)

has a positive solution 1. We choose ¢ as follows. Since by assumption b(1 + ¢) < 1,
it follows that b <1 < 1+ ¢. Hence by the monotonicity of Ao(-),

a=Xo(¢) > Ao((b—c)).
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This ensures that for some sufficiently small €, there is a positive solution ¥ to the
scalar problem

—dAY =Yp(a—e—(b—c)p —v) (v eQ), By =0 (x€dN).
Choose g = —a+ €+ (b—¢)¢ + 1. Then
g(x) > —a+bus —cuz if us < ¢ and ug > ¢.

In particular, this holds if (0, u2,u3) € M;. The assertion W* (M) N (X \ S) = 0 thus
follows from Theorem 3.3.

Define My C So and M3 C S35 analogously as the maximal invariant sets in the
subregions

{p<ur < (1 +0)p, ua =0, (1 —b—bc)p <uz < ¢}
and
{A=b=bc)p <us < ¢, ¢ <ug < (1+ ), uz =0},

respectively. Then a similar proof shows that W*(M;) N (X \S) =0 for i = 1,2.

To show that the system (4.1) is persistent, we observe that the invariant set 1(.5)
has the Morse decomposition {M7, My, M3, &1, Py, P3,0}. In view of Theorem 2.4,
we need only show that each Morse set does not attract trajectories from X \ S. This
has been done for M; (i = 1,2,3) in the preceding paragraphs. To see that the same
is true for ®; and 0, we use Corollary 3.4. Consider ®,. It is clear that ®; € S3 and
the eigenvalue problem (3.10) with ¢ = 3 has the form

dAY + (a —bp)p = \p  (z € Q), By =0 (xe€09Q).

This problem has a positive solution if and only if a—A = Ag(b¢). Since b < 1, it follows
that a = Ao(@) > Ao(bg). Hence A > 0, and by Corollary 3.4, W*(®1) N (X \ S) = 0.
A similar argument gives the property for ®5 and ®3.

Finally, since 0 € S, its corresponding eigenvalue problem has the form

dAY +ap = ) (x € Q), By =0 (x€0Q).

Since by assumption a > Mg, it certainly has a positive eigenvalue. Hence W*(0) N
(X \ S) = 0. This completes the proof. 0

Case 2: when there exists no semitrivial solution with two positive components.
Suppose a > Mg and b > 1. In view of Lemma 4.2, the system has no semitrivial
solution with two positive components. The phase portrait of the semiflow in S is
described in Figure 1. As can be seen, the maximal invariant set I(S) has the Morse
decomposition { M, My}, where M; consists of semitrivial solutions @1, ®, $3, and
the connecting orbits, and My consists of the trivial solution 0. (Since each ®; has a
one-dimensional unstable manifold as can be verified by examining the corresponding
eigenvalue problem, the connecting orbit between each pair of semitrivial solutions is
a one-dimensional manifold.) It is clear that M; is a chain-recurrent set in S. We
consider the conditions for W*(M;) N (X \ S) =0 for i =1, 2.

First consider Ms = {0}, which is a singleton. By Corollary 3.4, W*(Mz) N (X \
S) = 0 if for some i € {1,2,3}, the problem

dAY+ap =X (x€Q), By =0 (x€df)

has a positive eigenvalue. This is ensured by the assumption a > Ag.
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UE]

(I)Q U2

U1 (I)l

FiGc. 1. The boundary flow with a cycle.

To obtain conditions for W*(M;) N (X \ S) = 0, we construct the function P as
follows. Let A* be the principal eigenvalue of the problem

(4.13) dAp+ (a+ch)p=rp (z€Q), Bp=0 (z€09).
Since by assumption and the monotonicity of principal eigenvalue,

a > )\0(0) > Ao(—c¢)7

it follows that A* > 0. Choose a positive eigenfunction ¢ and define

3
AR

In view of Theorem 3.5, P is a local average Liapunov function with respect to S. A
direct computation shows that

i, )d
auy PO [ [ Zf@d] for € X\8,

P(n) Jo oui(z,7) dz
where u(-,t) = (u1(-, 1), u2(+, t), uz(-,t)) = nut and u; 4 = Ou;/0t. Since My has the w-

limit set My o, = {®1, P2, P3}, it follows from Theorem 3.2 that W*(M;)N(X\S) =0
provided that for each j = 1,2,3 there is a t = ¢(j) > 0 such that

> 1.

e Plrt)
4.15 Q(®;,t) = liminf
(4.15) (®5.1) nex\S,n—a; P(n)
Once this holds, Theorem 2.4 ensures that the system is uniformly persistent. Such
condition is given in the following theorem.
THEOREM 4.5. Suppose a > A\g, ¢ <1, b>1, and

(4.16) 20" > (b + O)|9llom

Then the system (4.1) is uniformly persistent.

Proof. It suffices to show that for each j = 1,2,3, there is ¢ = ¢(j) > 0 such that
(4.15) holds. We only prove the assertion for j = 1. The proof for other values of j is
similar. From equations (4.1) and (4.13) we see with the Green’s identity that

(4.17) /Qgpulyt(x,T) dr = / ou1 (A" —ug — bug — ¢(¢p — ug)) dx.

Q
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Since by the continuity of the solution of (4.1) with respect to the initial value
lim,, ., u = ®1, it follows that the right side of (4.17) tends to [, pd(A\* —(c+1)¢) d.
Using (4.13) and the Green’s identity, we have

/ PO\ — (c+1)6) da = / (d6Ap + (a + cd)bp — (c+ 1)d2p) do
Q Q

= / ©(dA + ap — ¢°) dx
Q

which is 0 by (4.5). Also using (4.13) and the Green’s identity, we derive
[ i ride= [ pus(x = cté - ) — ua — bus) d,
Q Q

/ pug(z,7)dr = / puzg( A —buy — c(¢d — uz) — ug) de.
Q Q

By the continuity of the solution w with respect to the initial value 7, it follows that
for any € > 0 there is a constant 7' > 0 and a neighborhood N(®;) such that

le(d —ur) + uz + busllom) <&, |[bur + (¢ — u2) + us|lo@) < [0+ )dllo@m) +¢
for 0 <t <T. Hence in this neighborhood N(®,),

/gqu,t(x,T) d:c// pug(z,7)dr > N\ — ¢,

Q Q

[ oustenas [ [ puoryde = x -0+ ol ¢
Q Q

Thus, using the assumption (4.16), we may choose N(®;) sufficiently small such that

This ensures that

w; i (z, T) dz
ng‘ﬂ : >0 fornpe N(Pp)and 7€ (0,7
Pt o wui(x, 7)dx

Therefore, by (4.14),

lim inf Plnrt)
nex\s,n—o P(n)

> 1 for ¢ € (0,77.

The proof is complete. 0
Remark. In the case when the boundary operator B is of the Neumann type, we
have ¢ = a and A* = a(1 + ¢). Hence condition (4.16) is reduced to b < ¢ + 2.
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EXPONENTIAL STABILITY OF A THERMOELASTIC SYSTEM
WITH FREE BOUNDARY CONDITIONS WITHOUT MECHANICAL
DISSIPATION*

GEORGE AVALOST AND IRENA LASIECKA?

Abstract. We show herein the uniform stability of a thermoelastic plate model with no added
dissipative mechanism on the boundary (uniform stability of a thermoelastic plate with added bound-
ary dissipation was shown in [J. LAGNESE, Boundary Stabilization of Twin Plates, SIAM Stud. Appl.
Math. 10, STAM, Philadelphia, PA, 1989], as was that of the analytic case—where rotational forces
are neglected—in [Z. L1U and S. ZHENG, Quarterly Appl. Math., 55 (1997), pp. 551-564]). The proof
is constructive in the sense that we make use of a multiplier with respect to the coupled system
involved so as to generate a fortiori the desired estimates; this multiplier is of an operator theoretic
nature, as opposed to the more standard differential quantities used for related work. Moreover,
the particular choice of our multiplier becomes clear only after recasting the PDE model into an
associated abstract evolution equation.

Key words. thermoelastic plates, uniform stability, free boundary conditions
AMS subject classification. 35
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1. Introduction.

1.1. Statement of the problem. Let  be a bounded open subset of R? with
sufficiently smooth boundary I' = Ty UT';, 'y and I'; both nonempty, and Tg NT; =
&. We consider here the following thermoelastic system taken from J. Lagnese’s
monograph [12]:

Wit — YAwy + A%w 4+ aAf =0

on (0,00) x €
80; — A0 + 00 — aAw; =0
Ow
w:azo on (0,00) x T;
(1.1) Aw+ (1 —p)Biw+ab =0
0w OB  Owy 06 _ on (0,00) x I'y;
ov a or K ov a@u o
ol

5—!—)\9:0 on (0,00) x T', A > 0;

wt=0)=w’ w(t=0)=wh 6t =0)=6° on Q.
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Here, a, 3, and n are strictly positive constants; positive constant ~ is proportional
to the thickness of the plate and assumed to be small with 0 < v < M; the constant

o > 0 and the boundary operators B; are given by

0w 0w 0w
Biw = 20— — Vi —— — 12—
1 2 920y L 9y2 2 92

(1.2)

0w Pw  Pw
BQW = (V% — V%)M + 1o <ay2 — 3332) )

the constant 4 is the familiar Poisson’s ratio € (0, 1), and [v, v5] denotes the outward
unit normal to the boundary. The given model mathematically describes a Kirchoff
plate, the displacement of which is represented by the function w subjected to a
thermal damping as quantified by §. We are concerned here with the uniform stability
of solutions [w, ] to (1.1).

1.2. Preliminaries and abstract formulation. As a departure point for ob-
taining the proofs of well posedness and of exponential stability, we will consider the
system (1.1) as an abstract evolution equation in a certain Hilbert space, for which
we introduce the following definitions and notation:

o With Hf (Q) = {w € H¥Q) : %ho =0forj =0,...k— 1}, we define
A: L2(Q) > D (A) — L*(Q) to be A= A?, with domain

D(A) = {w € HY Q)N HI%O(Q) :Aw+ (1 —p)Biw=0onT4 and

0Aw 0Bsw

(1.3) o0 + (1 —p) o7

OonFl}.

e A is then positive definite, self-adjoint, and consequently from [8] we have
the characterizations

D(A%) = H} ();
(14) D(Az) = HE ();
DAY ={we H¥(Q)NHE (Q): Aw+ (1 —p)Biw=0onT;}.

Moreover, using the Green’s formula in [12], we have that for w, & “smooth
enough,”

/ (A%W)BdQ = a (w, D)
Q

OAw 0Byw|

o~

—/ [Aw + (1 — p) Byw] —‘:dl‘,

where a(-,-) is defined by

(1.6)

a(w,w) = / [WarWzz + WyyDyy + B (Wralyy + WyyDzz) + 2(1 — P)wayWay] dS2.
Q
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In particular, this formula and the second characterization in (1.4) give that
for all w, © € D(A?),

—~ 1 1. ~
(17) <Aw7w>[D(A%)},XD(A%) = (AZUJ,AZQ))LZ(Q) = a(w,w)Lz(Q),

and in addition,

(1.8) lwl? 1 = HA%W‘ ’
D(A?2) L2(Q)

=a(w,w).

We define Ap : L?(Q) D D (Ap) — L?*(2) to be Ap = —A, with Dirichlet
boundary conditions, viz.

(1.9) D(Ap) = H*(Q) N H}(Q).
Ap is also positive definite, self-adjoint, and, by [8],
(1.10) D(A3) = HL(Q).
The space L2, ,(2) will be defined as

L*(Q) ifo+X>0,

(1.11) LU+)\(Q) =
L3(Q) if o+ A =0,

where L3(Q) = {6 € L2 Q) > Q 0}.
We des1gnate as Ar : L*(Q) D ( r) — L2(Q) the following second-order
elliptic operator:

Ap=-A+ 1,
n
(1.12)

o

D(Ag) = {9 cHYQ): o

+ A0 = 0} :
Apg is self-adjoint, positive semidefinite on L?(2), and, once more by [8],

(1.13) D(AZ) = H*(Q).

When A = o = 0, we shall denote the corresponding operator as Ay (instead
of as Ag).

Furthermore, as the bilinear form (V6, V) 2(q) is H' (Q)-elliptic on H*(Q2)N
L3(€2), we can define the norm-inducing inner product on H'(2) N L2, ,(€2)
as

(1.14)
(9’ 9) HY(Q)NL2, , (Q) (V& VG) L2(9) +A (0’ 9) L2(T) * % (9’ 9) L2(Q)

e (70,71) will denote the Sobolev trace maps, which yield for f € C°°(Q)

(1.15) B0l = fleinf= 20

r
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o We define the elliptic operators G1, G2, and D as thus:
A%y =0 in (0,00) x

ov
U:$ZOOH (0,00)XF();
(1.16) Gih=v <=
Av+(1—p)Biv="nh
9Av 9Byv on (0,00) x I'y;
1—
ov + 2 or

A%y =0 in (0,00) x €

=0

ov
v25200n (0,00) x To;
(1.17) Gah=v <=

Av+(1—p)Biv=0
9Av 8Byu on (0,00) x I'y;
ov + (L= p) or

Av =0 on (0,00) x £;

=h

(1.18) Dh=v <«
v|lp =h on (0,00) x I'.

The classic regularity results of [19, p. 152] then provide that for s € R,
DecL (HS(F), HS+%(Q)) :

(1.19) Giecl (HS(rl),HH%(Q)) :
Goel (HS(Fl),Her%(Q)) .

With the operators A and G; as defined above, one can readily show with
the use of the Green’s formula (1.5) that V w € D(AZ) the adjoints GrA
€ L(D(Az), L2(T")) satisfy, respectively,

Oow
GrAw = 0 . on (0,00) x I'y;

0 on (0,00) x Ty;

(1.20)
asho-{ R
e We define the operator P, by
(1.21) P, =1 +yAy,
and make the following points:
(i) With the parameter v > 0, we define a space H%O,»Y(Q) equivalent to
Hi}, (Q) with its inner product being
(1.22)

(WI’MQ)H%O i

@ = (W,w2) 20y + 7 (Vwi, Vwe) 1) Vwi,ws € Hp, (),



STABILITY OF A THERMOELASTIC SYSTEM 159

and with its dual (pivotal with respect to Lo inner product) denoted as

HF—olry(Q)' After recalling that H'(Q) = D(Al/Z) two extensions by con-

tinuity will then yield that

(1.23) P ecr (H%OW(Q),H;O{V(Q)) , with
(1.24) <P7LU1, w2>H1:01,7(Q)><H1l0 -V(Q) = (wl, wz)HlLo,v (Q) .

Furthermore, the obvious H %07 ,(Q)-ellipticity of P, and Lax-Milgram give us
that P, is boundedly invertible, i.e.,

(1.25) Plec (H;O{W(Q), H%M(Q)) ;

and moreover, P, being positive definite and self-adjoint as an operator P, :
L*(Q) D D(P,) — L*(9), the square root Pvl/2 is consequently well defined
with D(P. 1/2) H}, (Q) (using the interpolation theorem in [19, p. 10]; it
then follows from (1.22) and (1.24) that for w and & € Hy_ (),

(1.26) HP2 ‘

2 2 _ 2 .
12(9) ||w||L2(Q) +7 ||V‘UHL2(Q) = ||wHH11,0W(Q) ;

1.27 (P% ,P%A) — (D) o -
( ) 7w ’Ysz(Q) (w, @)y )

T,y
(ii) Finally, inasmuch as Green’s formula yields for w, @ € D(A%),

7<(A +AG2'71)"‘)7W> (Q)><HFO L(2)

Oow R~
(vw vw)L2(Q + Y (81/ ) + Y (71(*)7 GQAW)LZ(Fl)
L2(T)
(1.28) = =7 (Vw, V@) 20y = =7 {ANw, L)t @y (@)
after using (1.20). We thus obtain after two extensions by continuity to
Hi, () that

(1.29) P, =I—~(A+AGy7) as elements of £ (H%(W(Q), Hr_ol,y(Q)) .

In obtaining the equality above, we have used implicitly the fact that for
every w* € Hy' (Q) and w € D(A/?),
(130) = hut @t @ = TP nad)
We denote the Hilbert space H,, to be
(1.31) H, = D(A%) x H}, (@) x L2,,(2),
with the inner product
w1 w1

wy |, | W

0

(1.32) 9 H,
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e With the above definitions, we then set A, : H, D D(A,) —H, to be

(1.33)
I 0 0 0 I 0
A= o Pt oo || A 0 ),
0 0 I 0 _BAD(I_D'YO) _BAR

where (&%) = « <AR — % — AGy + )\AGQ'yO) ,

with D(A,) = {[o1,w2,6] € D(A}) x D(A%) x D(AR) N L2,,(9)
such that Aw; + 0AG17v00 — aNA Gy € Hlfolﬁ Q)
and o Awp + A0 € L2,,(9)} .

If we take the initial data [w” w!,6°] to be in H,, then the coupled system (1.1)
becomes the operator theoretic model

dl @ " w
— | w | = we |,
dt Ht ¥ et

(1.34)

w(0) WO
wi(0) | = | Wt
6(0) 6°

REMARK 1. For initial data [wo, wh, 90] in D(A,), the two equations of (1.1) may
be written pointwise as

(1.35) Pwy = —Aw — aAG 1700 + aNAGyy8 — aAf in Hl:ol,’y(Q);
(1.36) B0, = A0 — 00 + alw, in L2, ().

1.3. Previous literature. In recent years, questions related to the controlla-
bility and stabilization of thermoelastic plates have drawn considerable attention in
the recent past (see [10], [12], [9], [21], [22], and [24]); we shall concentrate here on
detailing results of strong and uniform stability related to the present model, that
of the two-dimensional Kirchoff plate coupled with the heat equation. This partic-
ular model, associated with free boundary conditions, was introduced by J. Lagnese
n [12]. In that work, he established the well posedness and exponential stability of
(1.1) with v strictly positive, and with the appropriately chosen feedback mechanisms
[F1(wt), Fo(w)] inserted into the natural boundary conditions of the Kirchoff plate
component of the system, viz.

0
wza—(::()on (0,00) x g,
(1.37) Aw+ (1 — p)Biw + ab = Fi(we) on (0,00) x I'y,
OAw 0Bow Owyy a0 )
W‘i‘(l—/},) or —’YW—FOéa—]:Q(wt) on (0,00)XFl,
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the proof of Lagnese is based on the use of differential multipliers, and it exploits the
fact that v > 0. Since, from a physical point of view, the thermal effects present should
induce some measure of energy dissipation (in fact, one can show the homogeneous
system’s strong stability by routine methods; see [12, Chap. 7], including the remark
at the end of sect. 2.3 on p. 161), a natural question arising in this context is whether
the system is actually (uniformly) stable without the boundary feedbacks Fi(w:),
Fo(wy) in place, i.e., when there are no added mechanical forces. Indeed, in the case
~v = 0 and with different boundary conditions than those in (1.1) imposed upon the
system, the answer to the question is in the affirmative and has been provided by
several authors. With v = 0, J. Kim in [10] showed the uniform stability of (1.1)
with the clamped boundary conditions w = g—‘;’ =60 =0onT, asdid J. Rivera and R.
Racke in [25], who studied the coupled equation with the hinged boundary conditions
w=Aw=0=0. Also with v =0, Z. Liu and S. Zheng in [21] proved the exponential
stability of (1.1) with the boundary conditions

w:a—w:Oon(O,oo)xFo7

(1.38) Ov
w=Aw+ (1 —p)Bw+abl =0on (0,00) xI'y,

leaving the case of free boundary conditions as an open question, even in the case
v = 0. The proof of Liu and Zheng is indirect in the sense that it is based on a
contradiction argument applied to the exponential decay stability criterion (due to
L. Monauni, R. Nagel, and F. Huang), a criterion essentially dictating the uniform
estimate for that part of the resolvent which lies on the imaginary axis. On the
other hand, it is now known that the case v = 0 is rather special as the corresponding
system (at least for certain boundary conditions) generates an analytic semigroup (see
[20]), a consequence of which will be the exponential stability of the system (recall
that the system is strongly stable). Given these results, the question of interest now is
whether the given thermoelastic system (without any additional boundary dissipation)
is uniformly stable in the nonanalytic case, viz. v > 0, with consequently the elastic
part of the system being of hyperbolic character.

A partial answer to the question above was given by the present authors in [2],
[3]: with v > 0 in (1.1) and the boundary conditions

w=(1-02 =0

(1.39) v on (0,00) x T
X(Aw+ (1 —p)Biw)+ab =0

replacing the higher order ones for w which are being considered in this work, where
the parameter x above is either 0 or 1, it is shown that the partial differential equa-
tion is uniformly stable with decay estimates which are “robust” with respect to the
parameter . The proof of this stability result is through an implementation of the
multiplier method (see [11] a for treatise of this technique), with an operator theoretic
quantity taken as the particular multiplier of choice.

The main goal of the present paper is to provide an affirmative answer to the ques-
tion of uniform stability of (1.1) with the free boundary conditions in place, again with
~v > 0. The fact that the presence of these higher order boundary conditions greatly
complicates the analysis was duly noted in [21], and the arguments employed in that
work do not carry over for plates with free boundary conditions, even when v = 0.
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Like our earlier work in [2], [3], the proof of uniform decay here is “direct,” based on
pseudodifferential (or operator theoretic) multipliers, in contrast to the contradiction
argument supplied in [21] for the case v = 0 and clamped boundary conditions. In
addition, our direct proof, making use as it does of the multiplier method, carries the
advantage of providing explicit estimates of the decay rates. However, an application
of the multiplier method alone is not enough to obtain the desired inequalities for
the equation (1.1) in the case when free boundary conditions are present. Indeed, in
proving the stability result (Theorem 1.3 below) we must couple the use of an oper-
ator theoretic multiplier with a decomposition of the solution w into three separate
components, and a subsequent and crucial invocation of recently derived trace regu-
larity results to handle each of these in distinct fashion; in particular, we exploit the
observation that the time derivative of one of these components (modulo a change
of variable) solves a certain wave equation. This scrutiny of boundary traces for the
hyperbolic component w of the dynamics is a sine qua non for obtaining the necessary
estimates for uniform decay. Finally, we must emphasize that the acute difficulty
of the problem which necessitates the use of microlocally derived trace estimates is
owing solely to the specific boundary conditions being considered here and does not
appear for other combinations of lower order boundary conditions.

1.4. Statement of the results. We shall begin by giving preliminary results
regarding the well posedness of the system (1.1) and the regularity of its solutions.

THEOREM 1.1 (well posedness). Again with the parameter v > 0, A,, given
by (1.33), generates a Cy-semigroup of contractions {eAVt}DO on the energy space
H.,; therefore for initial data [wo,wl,ﬁo] in H,, the solution [w,wy, 0] to (1.34), and
consequently to (1.1), is given by

w wO
(1.40) w; | =MWt | ec(o,T], Hy).
0 00

The following regularity result is needed to justify the computations performed
below.

THEOREM 1.2. For initial data [wo,wl,ﬁo] eD (A% ), we have the following:

(i) the solution [w,w:, 0] to (1.1) is an element of C([0,T); H*(Q) x H3(Q) x
H2(9).

(ii) w — ’}/Gz’ylwtt + OéGl’)/QQ — Oé)\GQ’}/oe € C([O, T]; D(A))

Our main result is as follows.

THEOREM 1.3 (uniform stability). With v > 0, the solution [w,wt,0] of (1.1)
decays exponentially; that is to say, there exist constants 6 > 0 and Mg > 1 such that
for allt >0,

w(t) W
(1.41) wi(t) < Mge™® ||| w!
H(t) H, 91 H,

REMARK 2. The estimates obtained in Theorem 1.3 are not uniform with respect
to the parameter v > 0. Indeed, the arguments used in the proof break down when
v =0, and consequently the estimates leading to the statement in Theorem 1.3 blow
up when v — 0. This is due to technicalities of the proof which rely on the strict
hyperbolicity of the model (a property which is lost in the limit case v = 0). On the
other hand, in the case v = 0, it has been recently shown in [27] that the thermoelastic
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system with free boundary conditions generates an analytic semigroup. Therefore,
a posteriori (recalling the strong stability of the system), we conclude that uniform
stability holds true also for the case v = 0. However, these estimates cannot be
reconstructed as a limiting case of the present problem when v > 0. This is unlike the
case of other boundary conditions associated with this model (see [3]).

2. Proofs. The proofs of well posedness and of regularity (Theorems 1.1 and
1.2) are by now fairly routine (see [12, Chap. 7] for related well posedness/regularity
results). However, since these preliminaries are critical for our ultimate end of uniform
stability, we provide their concise proofs for the sake of completeness.

2.1. Proof of Theorem 1.1. In establishing the semigroup generation of A,
we will show that the conditions of the Lumer—Phillips theorem are satisfied; namely,
we demonstrate here that A, is maximal dissipative.

To show the dissipativity of A,: for [wi,ws, 0] € D(A,) we have

(2.1)

w1 w1
Ay | wa || w2
0 0 1)y
= (A%WQ,A%CUl)
L2(Q)

n (Pé P! (Awl +adpl— 220 — aRGiv0 + oz)\AGz'yOH> P2 w2>
n L2(Q)
— (AD (I - D'YO)W% H)Lz(g) - (UARH» 9)L2(Q) ;

using the characterizations in (1.4) and (1.20), along with the equality posted in
(2.23), we have upon the taking of adjoints that

(1) = (Aton Aben) | - (o) b)) coad)

+a (ARG — 09,w2> —« (0, an) —al (97w2)L2(F1)
U 12(@) W ) rar,)

—a (Ap(I = Dyo)wz,0) 2 () — (nARY, 0) 2(q

1 1 1 1
= (Azwg,Azwl)Lz(m - (A2w17A2w2>L2(Q) —a (A0, w2) 12

Ow
—o (9, 82> —aA (0, w2)pa(pyy + @ (Aws, 0) 12 ) + (NAG — 06,0) 12
vV /r2mry)

1 1 1 1
= (Asz’Ale)Li’(Q) - (A2w17A2w2)L2(Q) —&—Oz(V@,VwQ)Lz(Q)
—a (Vws, V‘g)m(g) -n ||ve||2L?(Q) —An ||9H22(r) -0 ||‘9||2L2(Q)

(22) <0

(here, we are using the fact that % = —M\0); i.e., A, is dissipative.
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To show the maximality of A,: if for some £ > 0 and arbitrary [fi, fo, f3] €H,,
[w1,w2,0] € D(A,) solves the equation

W fi
(2.3) EI-Ay) | w2 | =| f2 ],
¢ I3

then this relation holds if and only if
(2.4)
§w1 — W = f1 in D(A%),

§w2 + P,;l <Aw1 + OéAGl’}/Qe — CI)\AGQ’Y()Q — aAgrfl + 0;700) = fQ in Hfl‘g,'y(Q)v

€0+ %AD(I — Dryg)ws + %ARQ =f3 in L2 ,(9)

e
EPwn + EAw; + afAG1 708 — ANEAGY00 — afArb + %9

(2.5) =Py fo+ Py f1 in Hy (),

alAp (I — Dyg)wy + B340 +nARl = Bfs + aAp(I — D) f1 in L*(9).
At this point we bring forth the following proposition.
PROPOSITION 2.1. The operator F defined by

&r, + ¢4 alAG v — aNeAGyyy — afAR + anﬂI

alAp(I— Do) BEI+nAR

is an element of L(D(AY?) x HY(Q) N L2, ,(Q),[D(AY?)] x [H'(Q) N L2 ,(Q)])
and is boundedly invertible.

Proof of Proposition 2.1. Easily, from the definitions of the operators which make
up the components of F, all of which are given in section 1.2, we deduce that F is
bounded in the asserted topology. Moreover, we note by Green’s theorem that for

arbitrary @ € D(AR) and w € D(A'/?),
(2.7) (ARb + aXeA Gy, w

(2.6) F=

o
Nip@abyx@at) = (VO V@i 4 0@
the characterization (1.13) and an extension by continuity will then have that (2.7)
holds for all § in H'(€2), and so for 6 in H*(Q)NL2_ (). (2.7) in turn, when coupled
with (2.23), (1.24), (1.14), (1.20), and Green’s formula will provide the following
coercivity inequality for all [w,6] € D(AY2) x H'(Q) N L2, () :
w w 1
(PLo ]| o ]) =€ 1eliom + €119ulag + €| A2

2

L2(9)
—af(V0,Vw) 2+ af(V0,Vw) s,

+n|IVOI[7 2 () + A 16112y + (o + BE) 16]]72(q)

(after noting the cancellation of boundary terms)

12 2
(2.8) >C {HAWHH(Q) Oz @)nrz, @
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(where (-,-) in (2.8) denotes the pairing between D(A1/2) x H'(Q) N L2_,(Q) and
its dual, and where the constant C' > 0). Thus, by Lax-Milgram, F~! exists as an
element of

!

c ([D(Aé)]/ X [H'(9) N L2, ()], D(AY) x H'(@) L?,H(Q)) ,

and the Proposition is proved.
To complete the proof of the maximality of A, we apply the inverse assured by
Proposition 2.1 to both sides of (2.5) to obtain

[ 2 } —F! [ §P,f2+ EP fi ]

(29) 0 ﬂf3+OIAD(I*D’YO)f1

wo = &wi — f1,
and a fortiori, one has, by using the second equation in (2.5), that

ARl = —% — %fAD(I — Dyp)wr + %f?, + %AD(I —Dvo)f1 € L*(),

viz. 0 € D(AR)NLZ, (). This additional regularity of 6, in conjunction with that im-
plied in the first equation of (2.5) (namely, Aw; +aAG1700 —a A Gayb € Hlfol,y(Q))
and along with the third equation of (2.4), gives that our constructively acquired so-
lution [wy,wo,0] to (2.3) is in D(A,) as defined in (1.33). Hence, A, is maximal
dissipative and the proof of Theorem 1.1 is complete.

2.2. Proof of Theorem 1.2. By definition, if [w®,w!,6°] € D (A,), then w' €
D(A'?) and 6° € D(AR), and

1

(2_10) Au° + OzAGl’yon — a)\AGgfyOGO =gc HITOI,'y(Q) = [D(AZ)}IQ

as A= [D(AYY)] — D(A%/*) ¢ H3(Q) (this containment deduced by the last
characterization in (1.4)), we have after applying A=! to (2.10), the use of trace
theory and the regularity posted in (1.19) that

(2.11) W' = A7lg — aG1y00° + aGayd° € H3(Q).

Thus for [w°,w!,0°] € D (A2),

(2.12)
LUO
A, | Wt
90

(.4)1

B P;l —Aw® — aAG1700° + aAAG2700° + o (ARHO — ;90)]

eD(A,),

(07
—%ARGO = GAp (I~ Do)’

and (2.12) coupled with (2.11) implies that

(2.13) wh e H3(Q).
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Moreover, (2.12) also has that
(2.14) P{l Aw® + 0AG176° — aNAG2v00° — a <AR€0 — ;90>} =g,

where g € D(A/?), or equivalently
(2.15) AW’ + yAGoy19 + aAG1700° — aANAGyyp8° = g — vAg — aA° € L*(Q),

after using (1.29). A fortiori then, w® + vGay1g + aG1700° — aXGay00° € D(A) C
H*(Q). But trace theory and the smoothing specified in (1.19) give that G219, G1706°
and Goy00° € H*(Q), and thus D(A2) ¢ H*(Q) x H*(Q) x H*(Q) with the inclusion
being continuous. The solution [w,w;, ] will consequently have the asserted regu-
larity upon consideration of the fundamental property that for & > 0, [w® w!, 6]
eD(AY) =

w wo
(2.16) a;t =40 (;Ol € C([0,T]; D (45)) -

To prove (i), we note that with [w°,w?,6°] € D (.A% ), wi € C([0,T]; D(AY/2)),
so the solution [w,w:, 0] to (1.1) satisfies

(2.17) —Aw + YAGyy1wy — A G100 + aNAGov00 = wy — YAwy + aAf

in C([0,T); L*(€)), which establishes the result. |
REMARK 3. Because of the regularity result posted in Theorem 1.2 (ii), we have
for sufficiently smooth initial data the valid pointwise representation

(2.18) wit + A%w — yAwy + aAd = 0.

REMARK 4. If either A or o > 0, then for initial data [wo,wl, 90] eD (.A%), we
will also have that the solution component 6 of 1.1 is in C([0,T]; H3(Q)). In fact, the
last component on the right-hand side of (2.12), the definition of D (A,), and (2.13)
give that

(2.19) Apt® = h+ 2 Aw! € HY(Q),
n

where h € H?(Y). Applying Agr~! (which exists for X or o > 0) to both sides of (2.19)
thus yields

(2.20) 0° € H*(Q),
and the result will follow from the semigroup property posted in (2.16).

2.3. Proof of Theorem 1.3. In proving Theorem 1.3, we begin with a prelim-
inary energy identity.

LEMMA 2.2. Again, with initial data [wo,wl,GO] € H,, we have that the compo-
nent 0 of the solution of (1.1) is an element of L? (0,00; H'(Q) N L2 ,(2)); indeed,
we have the following relation ¥ T > 0:

T
2
(2.21) 20 [ 100 sz, o € = B(T) = B, (0),
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where the “energy” E.(t) is defined by

2 1 2 2
+HP7 wt(t)’ +H9||L§M(Q)’

(2.22) E,(t) = Hz‘i%w(t)‘ 12(0)

L2()

and where the norm of H*(Q) N L2, () is as defined in (1.14).

Proof. Starting with initial data in D(.A,) which will provide ¥ T > 0 that the
solution [w,wy, 0] € C([0,T]; D(Ay)) and [w, wy, 0¢] € C([0, T];H,), we have pointwise
on (0,T)

T 1P wt) 1 [ wit)
o wi(t) =2A, | we(t) |, | welt) 5
o) o) || ow

H, H,

and for this special choice of initial data we will have the desired equality (2.21) upon
integration and using the fact from (1.12) that

(AReae)LZ(Q) = (—AH + 09»0>
N L2(Q)

(o
(2.23) = V0172 + ) 16172y + A ”e”iz@) for 0 € D(AR).

The asserted L2-regularity follows immediately from (2.21), using the norm definition
(1.14) for H(Q2) N L%, (), and the fact that {e4+'} _ s a contraction semigroup.
A density argument concludes the proof. ] a

REMARK 5. J. Lagnese in [12] first showed the dissipativity property (2.21) through
a formal integration and a subsequent justification through variational arguments, and
the alternate proof is included here as a simple consequence of contractive semigroups.

We next derive a trace regularity result for the model under consideration here,
a regularity which does not follow from the standard Sobolev trace theory, and which
is critical in our estimates of uniform decay. We note that related trace regularity
results for Euler—Bernoulli plates were proved in [18] and for Kirchoff plates in [14].

LEMMA 2.3. One has the component w of the solution [w,ws, 0] of (1.1) satisfies
Awlp, € L*(0,T; L*(To)) with the estimate

T T
/ HAW||2L2(FO) dt < C (/ {Hﬁﬁw’
0 0

(2.24) +EL(T) + EW(0)> :

1 2
b
2(Q) L2(Q)

2
2
. + HaHHl(Q)ﬁLi_M(Q) dt

where C' does not depend on the parameter .

Proof. If we take initial data [w°,w!,6°] in D(A2), then Theorem 1.2 provides
that [w,wy, 0] is a classical pointwise solution of (1.1). We will work to extract the
desired estimate (2.24) in this special case—and consequently for all initial data after
an extension by continuity—by multiplying the first equation of (1.1) by the quantity

h - Vw, where h(x,y) = [h1(z,y), h2(x,y)] is a [C’Q(ﬁ)}2 vector field! which satisfies

| [v1,ve] onTy,
(2.25) hlp = { 0 on T,

1Here is where we use the fact that I'g and I'; are separated.
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followed by an integration from 0 to T’; i.e., we will work with the equation

T
(226) / (wtt — 'yAwtt + Azw + OéAg, h - Vw) dt = 0.
0

L2(Q)
(i) First,
(2.27)

T T
/0 (wtt,h-Vw)Lg(Q) dt = (wt,h'VW)Lz(Q)‘

T
0 _A (wt7h'th)L2(Q) dt
T 1 (T
= (@irh - V) )| _7/ /div(wfh) dtds)
@y 2 o Jo
1 [r )
—+— Wy [hlm + h2y] dtdS)
2Jo Ja
T 1 (T )

after making use of the divergence theorem and the fact that w; = 0 on I'y.
(ii) Next,

(2.28)
T
A (_ACUtt, h ° VW)LQ (Q) dt

T T
= (anv(h'vw))ﬁ(ﬂ)‘o B /0 (Vwr, V (h - Vi) 2 o dt

T 1 [T
(th,V(h~Vw))L2(Q)‘O - 5/0 /Qdiv (\th|2h) dtdo
T
I,

T 2 2 h -
+ / / [w”hzy 4 L 1dtdQ
o Jol 2 9

T
= (th,h . Vw)LQ(Q)‘O

T w?x hay wfyhu wthlx w?y hay
+ + —~ —
0o Ja 2

2 2
wmhlw wtthy
2 2

T
] dtdQ) — / / [wmwtyhgz + wtmwtyhly} dtdS)
0 Q

dtd2

2 2 2

T
7/ / [wmwtyhgm + wtmwtyhly} dtdQ,
0 Q

after again using the divergence theorem and the fact that

/ div (|Viar? ) d02 = / [Ven|2 dT = O(as wi(t) € HZ, ().
Q o
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(iii) To handle the fourth-order term, we use Green'’s theorem (1.5), the given
boundary conditions of (1.1), (2.25), and the fact that w € HE (2) to obtain

(2.29)
T T
/0 (Azw, h- Vw) L2(Q) dt = /0 a(w,h-Vw)dt

2

T T
Oh-Vw 0w
. T — A 1—u)B ——dl'ydt.
+a/ 5 6 5 dr'ydt /0 FO( w+ (1 —pu)Bw) 52 dTodt

We note at this point that we can rewrite the first term on the right-hand
side of (2.29) as

(2.30)

T T
1
/0 a(w,h-Vw)dt = 5/ / h-V w2, + wgy + 20w wyy + 2(1 — p)wgy] dtdQ

+0 (/ “AQw’L2(Q) )’

where O(fo ||A1/2wH%2(Q)dt) denotes a series of terms which can be ma-

jorized by the L?(0,T; D(A'/?))-norm of w; we consequently have by the
divergence theorem that

T
/ a(w,h-Vw)dt =
0
1 T
7/ / h-V w2, +wiy 4 2uwaewyy + 2(1 — p)ws, | did

o[ Al )

1 /7
= 5/ / div {h [wim + wiy + 2w gwyy + 2(1 — p)wiy]}
0o Jo

T D)
co( [ )

1 /T
= 5/ / (w2, + wiy + 2w gwyy + 2(1 — ,u)wiy] dtdTy
0 JTo

vo( [ asly, @)
:;/OT FO(Aw)2dt+(9</ HAQ”’MQ)‘“)’

where in the last step above, we have used the fact (as reasoned in [12, Ch.
4] that w|p, = ‘g—‘ﬂpo = 0 implies that w2, + w2, + 2weewyy + 2(1 — p)ws, =
(Aw)? on Ty.

(2.31)
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To handle the last term on the right-hand side of (2.29), we note that Byw = 0
on I'g, which implies that
2&}
ov?

(2.32) Aw=Aw+ (1 - p)Bw = on Iy ;

we consequently have upon the insertion of (2.31) into (2.29), as well as by
the consideration of (2.32), that

T 1 T 9
/[)(A2w7h'vw)L2(Q)dt:_§/0 ||AW||L2(F0)dt

T ) T
(2.33) +a/0 2 ahava dlydt + O (/0 HAE“’H;(Q) dt).

(iv) To handle the last term on the left-hand side of equation (2.26), we again use
Green’s theorem and the boundary conditions posted in (1.1) to obtain

T T

To finish the proof, we rewrite (2.26) by collecting the relations given above in
(2.27), (2.28), (2.33), and (2.34) to attain the desired inequality (2.24), upon the
taking of norms and a subsequent majorization. ]

In showing the exponential decay of the semigroup {eAVt}DO (Theorem 1.3) it
will suffice as usual, to prove that there exists a time 0 < 7' < oo which satisfies for
all initial data in H,,

(2.35) E(T) < £E,(0) with £ < 1.

By a density argument, it will then be enough by Lemma 2.2 to show the existence of
a time T, 0 <T < oo, and a positive constant Cr (independent of ~y) for initial data
in (w0, w',0°] € D(A2) such that

T
(2.36) E,(T) < OT/O ||9H§{1(Q)0L§M(Q) dt,

to which end we will proceed to work.

2.4. Proof of inequality (2.36). Because of Theorem 1.2, we have for initial
data [wo,wl, 90] eD (“43) a classical pointwise solution [w, wy, 8] of (1.1); we can thus
multiply the first equation in (1.1) by A;'6 and integrate in time and space to obtain

T
(237) / (wtt — ’YAwtt + AZ(,Q + O[Ae, ABIH) dt = 07
0

L2(Q)

the bulk of the work from here on out will be the scrutiny of the left-hand side of this
equation.
. o (T _
(A.1) Dealing with [, (wir — YAwy, AD19) L2(@)
the second differential equation of (1.1) and the fact that Agf) = —Af+ 70 = —A0 +

dt. Using an integration by parts,



ADof + 260 = Ap(I-

(2.38)
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(wr, Ap'0)

T
L2(Q) ‘0 + v (th, VABW)

D~y)0 + %9 produce

T
/(; (wtt - ’YAwtt» A 9) L2(Q)

L2(Q) ’0

T
_ /0 (@0 AB00) gy +7 (Vorr, VAG00) o] dt

T
_ 2 2
a8 [ [lnlEaiay + 7 Vel

—af” / (Wi, Dyowt) 2y + 7 (Ver, VDVowt)m(Q)] dt

+n6~ / (wt, (

+op71 [(wt, AD 9) £2(9) + (th, VABlﬁ)
0

— D10)0) ey + 7 (Ve V(I = D760)6) |

Lm)} di

T T
+ (wt,A;)le)LQ(m‘o +7 (Var, VAR'0) (Q)‘O

A further integration by parts, an application of Green’s theorem (1.5) to the term
fOT (Vws, VDypwr) L2(9) dt, and a consideration of the boundary conditions posted in

(1.1) yield
(2.39)

T
—’}// (th, VD’}/Owt)Lz(Q) dt
0

7 T
- (th,VD“Yow)LZ(Q)‘O +“Y/ (Vwir, VDyow) 12 (q) dt

(th, VD'yow L2(Q) ’

T
/0 (Awtt, D’Yow)Lg (Q) dt

T
+’y/ <agjtt, 70w> dt
0 v L2(T'y)

T T
=7 (Vwi, VDyow) 120 ‘o - / (wer + A%w + a A, DW’O‘“)B(Q) dt
0

T
0
+7/ (5}” 70w> dt
0 v L2(T)

T
—v (Vws, VD’yow)LQ(Q) ‘0 _

T T
(wt, D’}/OW)LQ(Q) ’0 =+ /O (wt, D’Yowt)Lz(Q) dt

T T T
f/ a (Dyow,w) dt — / <a9, 5D'yow> dt — / <Aw, 8D70w> dt
0 0 ov L2(T'y) 0 v L2(T)

T
+a/ (VO,VDyow) 12 (q) dt.
0
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Given that Dy € L(H*(Q)) for all real s and further using the fact that A" is
“smoothing,” viz. ||A510HH2(Q) < C|0]l ;2(q)» we have the following estimates for the
solution [w, wy, 0] of (1.1) corresponding to arbitrary initial data in H., :

(240) (T = D)8l (o) + |45l 2y < C IOl rz, (0
(2.41) IV = DY0)0ll 20y + (VAR | oy < C Ol yre, (o0
1
(2.42) IVDyow| 12y < C HA%‘)‘ L2(0)
D
b [ 2] <ofai,,
v H3(T) L2

Thus a substitution of (2.39) into (2.38) and a subsequent majorization which
makes use of the inequalities (2.40)—(2.43) will give the estimate

(2.44)

T T
/0 (wie — ’YAwtt,Az_pl‘g)Lz(Q) dt — 01571/0 {”th%%Q) +7 ”thHQL?(Q)} dt

T
<C [ [lotllaen 1mscaynsz, o + 7 ¥ty DO ns, o]

o+

T
+C[E,(0) + E,(T)] + /0 a (Dyow,w) dt

T
D
/ (Aw,a 'yow> dt
0 aV L2()

T
< 6/0 [HA%}‘

+C[B,(0) + E(T)] + %
+i

T
D
/ (A%a W") dt
B 1Jo ov L2(Ty)

where the constants C' and C¢ do not depend on v, 0 <y < M.

(A.2) Dealing with fOT (Azw, Al_)lﬂ) dt. Yet another application of Green’s theo-
rem in (1.5) and the use of the enforced boundary conditions in (1.1) give

T T T aA—le
/ (A%w, A}'0) dt:/ a(w,A519)dt—/ (Aw, D ) dt
0 0 0 W) 12y

T A—l
(2.45) +a/ (9,8 D 9) dt.
0 al/ L2(F1)

+

2 2 2 r 2
@) + wellz2) + 7 VWil 720y | dt + CC/O 1015 @)rz 0 41

T
/ a (Dyow,w) dt
0

(07

)
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Estimating the right-hand side of (2.45) yields, after the use of trace theory,
elliptic regularity and the mean inequality,

T
/O (A%w, Ap'0) dt

T 1
<a [[Ja
0 L2(Q

T T
€ 2 2
+720 ; ||AWHL2(FO)dt+Ce/O H9||H1(Q)HL3+)\(Q) dt

(where the inverted C' is the same constant present in (2.24))

T
<o [ [ak
0 L2(Q
T L2 12
/(HAW\ + || P )dt+
0 L2(Q) L2(Q)

T
+B,(0) + Eﬂ)] +C. / 1013 @iz, o

(by Lemma 2.3)
T ) 2

ge/ [HA“‘" }dt
0 L2 (@)

T
d6) OO+ EDI+Ce [ 100z, o

: 191 1)z, o) 9

: 1011512 @) r2 (0 41

+e
2

2
L

p2
2(Q) + H Uats

after the use of the mean inequality.
(A.3) Dealing with fOT (A, ABIH)LZ(Q) dt. Finally, for the last term of (2.37),
again using the fact that Arf = Ap(I—D~p)0 + %0, we have easily

T
a/ (AD(I — Do)+ 20, AD19) dt
0 n L2(Q)

T
(670
(2.47) :a/ [0||iz(9)—(D'yO€,0)L2(Q)+(AD19,9) ]dt
0 g L2(Q)

T
< 2 .
< C/o ||9HH1(Q)0L§,_M(Q)

(A.4) Combining (2.37), (2.44), (2.46), and (2.47) thus results in the following.
For € > 0 small enough there exists a constant C' > 0 (independent of v) such that
the solution [w,w, 6] of (1.1) satisfies

T
[0
(ﬂ — 2e> /O {Hthizm) + HVWtHsz(Q)] dt

T
2
| 10y -+ BT+ 2,0
dt + %

T T
p HAl ’ / Drow, w) dt
+ e/o 2w . 31/, a (Dyow,w)
(2.48) +o

T
/ (Aw, 8D70w> dt
B 1o v/ L2y

where the noncrucial dependence of C' upon € has not been noted.

<C

2

(07

)
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(A.5) Estimating the residual terms | fo a(Dyow,w)dt| and | fo (Aw, 2802y 5 1 vdt|.2
At this point we will find it advantageous to consider a decomposition of the solution
component [w,w;] into w = w® 4+ w® + WG (again with the corresponding initial
data [wo,w1] € D(A2)), where the w® solve, respectively,

—vAwt(tl) + A% = —aAf on (0,00) x 9,

O
w) = gy =0 on (0,00) x Iy,
(2.49) Aw® 4+ (1 = p)Biw™ +af =0

oALD ‘a 9By ,yawﬁtl) on (0,00) x T'y,

ov (L=n) or | ov =0

wD(t=0)=wM(t=0) =0

—yAwg) + A%w®) = —wy; on (0,00) x Q;

(2)
w®@ = agy =0 on (0,00) x Tp;
(2.50) Aw® + (1 - p)Bw® =0

on (0,00) x I'y;
AW 9Bw® 9?99 (0,00) x T
+(1-p) - +

ov (1= p or v ov 0‘520

w?(t=0)=w?(t=0) =0

—yAw + A20®) =0 on (0,00) x

3)
w® = &gy =0 on (0,00) x To;
(2.51) Aw® 4 (1 — p)Bw® =0

on (0,00) x I'y;
08D 9By 9w (0,00) > T

o, T 1, =0

w® (0) = w"; wt(?’) (0) = wl.

Through a semigroup formulation, the well posedness of (2.50) and (2.51) can be
handled just as easily as the entire system (1.1); to wit, defining on the state space

2Notice that at this point, one might be tempted to straightaway majorize fo a (Dvyow,w) dt so
as to obtain something like |f0 a(Dvyow,w)|dt < Cfo |AY/20(t )||L2(Q)

suffice as we do not have control over the constant C' (C' may not be small << 1). Therefore, we
need a different, more complex argument which will culminate in the estimate (2.72) below; likewise

for the term |f0 (Aw, aDWO “) L2 (1) dt].

dt. However, this will not
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D(A1/2) x H%D,W(Q) the operator Avy as

(2.52) A, = < _ﬁ(llA é )
(2.53) (where P, = yAy € L(H}, ,(Q), Hp! ()
(2.54) with domain D(/L) = {[wl,wg] € D(A%) X D(A%)};

then Vzith the same degree of effort as in the proof of Theorem 1.1, we can show
that A, generates a unitary Co-group {e**},5q on D(A1/2) x Hy, . (Q) (note we
are using the knowledge that P I exists, inasmuch as Ay is elliptic on H%(W(Q)7
and that ﬁv = v(A+ AGy71) from (1.29)). Consequently we have that w® ¢
C([0,T]; D(AY/2) x Hi}, (), with this unique solution of (2.50) written explicitly
as

(2.55) { z;;gg ] = /O Aot { P (—uwu(s) +OaAAGma(s)) o

where again wy; is the second time derivative of the solution component w. Re-
call that we are taking the initial data [w°,w',6°] to be in D(A2), and so wy €
C([O,T};H%O’W(Q)). Moreover, for arbitrary initial data, 8 € L2?(0,T; H'(Q) N
L? 2(2)), by Lemma 2.2, and this regularity, coupled with the facts contained in
(1.17), (1.19), and (1.4), provide that AGyyo0(t) € L*(0,T; HF_OIW(Q)) Hence the
formula (2.55) is well defined. Likewise, w® € C([0,T]; D(AY/?) x H}, _(Q)) with

W0
wl |-

Regarding the well posedness of the system (2.49), we have the following result
from [14] and [13].

REGULARITY THEOREM. For arbitrary initial data [wy,w;] € D(A'/?) xHE, (),
parameter € > 0, f € L*(0,T; HI?OIN(Q)), and g € L*(0,T; HY?(T)), the following
system is well posed:

(2.56) W@ (t) = At

Ewyp — YAwy + A%w = f on (0,00) x Q;

ow
wzazo on (0,00) x T;
(2.57) Aw+ (1 —p)Biw=g
0w OBy Ouwy O (000 <

5, tU-m—p— 15, =

w(0) = wo, wi(0) = wy,

with the solution [w,w;] € C([0,T]; D(AY?) x H} _(9)).
To make use of the above theorem for the resolution of (2.49) with arbitrary
0 in H'() N L2, ,(Q) subject to Robin boundary conditions, we note that —A =
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Ap—2% € L(H(Q), [Hl(Q)]/) and consequently Af € L?(0,T; Hy ' (Q)); moreover,

Fo ¥
0| € L?(0,T; H'/2(T)) by the trace theorem, and so the regularity theorem will give
us that

(2.58) w® € C([0,T); D(A%) x HE, (),

with the pointwise estimate

w®(t) ? T 2
0 <o | [ 100wt a [ 1001, @
H wy (1) D(A%)XH%OW(Q) 0 o S
T 2
(2.59) < C/O ||9(t)HH1(Q)mL§M(Q) dt.

A simple uniqueness argument which makes use of the regularity theorem verifies
that indeed the solution component w = w® +w® 4+ w3 Moreover, concerning the
explicit representation (2.55), an integration by parts has that

/te.;\,y(ts)|:~10 :|ds_e.A(t s)|:~ 0 }
0 P wtt( P,;lwt(s)

)
WA 0
+/O e’ A'y |: ﬁflwt(s) :|d5

t t S5
_/ oA (t=9) [ Pl (s) } s,
0 0 0

where the last equality above makes sense pointwise in [D(.,IY*)]’ = [D(AD)] x
[D(A/2)]’; hence upon majorizing (2. 55) with the expression (2.60) in mind (and

t

0

(260) A | Brton(s) }

using the contraction of the semigroup {e"(V},5¢), we have

(2.61)

W@ (1) |I°

Wi (t)

2 2
) <Cr {H@HL2(0,T;H1(Q)mL§M(Q)) + lwelleo iz | -
DAY )xH (@)

Thus, using (2.59), (2.61), and the explicit representation (2.56), we have
) +w 2)(t)
W(l) +wt )(t)
(2.62) < Cr 16132 0.2,0 @

(2.63) H { wiol i ]

Further analyzing w®, if we make the substitution z = Aw®), we then note that
z solves the wave equation

2

D(A%)xH;M(Q)

2
2@t lwelleo iz | 3

< E,(0).
D(A2)><H1 ()

(264) Yz = AZ,
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with [z, z;] € C([0,T]; L?(Q) x H=1(£2)). Consequently, the recent regularity result of
[26] (specifically, apply Theorem 3 therein together with Remark 2.3 and the remark
after Theorem 9 in [26]) reveals that z has a “trace” on I' with a positive constant
C(T,~) and a p > 0 such that the following estimate holds:?

(265) || Z|F||L2(0,T;H_%+p(l_‘)) < C(T7 7) || [27 Zt] ||C([O,T],L2(Q)><H*1(Q)) ;
and as pointwise we have

2 2
(2.66) 1) 2200 + 20110y < O, (0)

(from the estimate (2.63)), we end up with

? < C(T,~)E, (0).

(2.67) HAWC”)‘F’

L2(0,T:H ™3 F7(T)
Recall that w(®), as the solution of (2.51), satisfies

2?w® Ow®)
G) (1) —(1—
(2.68) Aw (1—p) 9.2 (1—pk oy

on (0,T) x I'y,

where k denotes the curvature, and so (2.68), coupled with the estimates (2.67) and

Ow®

<c || < C(T)E4(0),
’ W Moty C([0,T);H?()) (DE,0)
2,,(3) :
gives that 52 € L2(0,T; H=277(Ty)) with
T
52 (3)

(2.69) H“E < C(T,7)E(0),

% |l 20,msm 340 (ry))

and (2.69) is in turn equivalent to

(2.70) HVOW(B)‘

< C(T,7)E-(0).

L2(0,T;H 27 (I'y))

REMARK 6. The estimate in (2.70) can also be derived independently of Tataru’s
result in [26] by decomposing problem (2.51) microlocally into respective elliptic and
hyperbolic parts. In the elliptic sector, we can use standard elliptic regularity and the
boundary conditions on Ty to deduce the regularity of the trace yow® in H?(0,T xT).
In the hyperbolic sector, we apply the transformation z = Aw®, and we are subse-
quently led to the study of the wave equation with its forcing term in L?(0,T; H=1(Q))
(due to microlocalization). The arguments presented in [16] and (see also [17]) ap-
ply to the hyperbolic sector specifically and provide the estimate (2.70) walid in that
sector. Combining elliptic and hyperbolic estimates yields (2.70) with the value of p
being at least 11—0. Instead, the estimate obtained by using Tataru’s result [26] leads to
the optimal value of p = %.

3We note that the value of p depends on the geometry; however, we always have p > 0.
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Given this extra regularity for the trace of w® |r1’ we can hence invoke a classical
PDE interpolation inequality to finally obtain

(2.71)

<@ o,
L2(0.T;H3(Ty) — T o

<3>‘
H%w L2(0,T;H3 7 (Ty))

Crs [,
+0r,4 ||[70w L2(0TH2(F1))
(where C(T,7) is as in (2.70), and Cr ., denotes another positive constant depen-
ding on T and %)
< E,(0) + Cry | <3>‘
< By(0) + Cry || L2(0,T;H ()
(after using the estimate (2.70) and trace theory)

2

2
< By (0) + O [l a0y + O [ 0@

(after using the decomposition w = w™® +w® + w®)
2 2 2
< Ey(0) + COry W”Lz(o,T;Hl(ﬂ)an;M(Q))+H””Lz(o,T;Hl(m)+||°"tHC([o,T];L2(ﬂ>> :
after using the inequality (2.62).
With the decomposition of w in hand, along with its accompanying norm es-
timates, particularly that of the trace ’ygw(3) in (2.71), we can now deal with the

recalcitrant terms |f0 a (Dvyow,w) dt| and ‘fo (Aw, 22709 15 1yt

(A5.i) Dealing with ‘fo (Dyow,w) dt’

T
/ a (Dyow,w) dt
0

/T a (D’yo (w(l) +w® 4 w(3)> ,w) dt
0

T
< / C HD% (w(” +w® 4 w(3)>‘
0

(after using the fact that Dy € L(H?(Q)))

T
6/0 HA“’Hsz(Q) dt + Cry

dt
L2(Q)

A%y

H2(Q) ’

T
2 2
/0 1017 () z2(0) At + w12 0,711 (0))

2
+ ||thC([0,T];L2(Q))}

(2.712)  +CI[E,(T)+ E,(0)],
after using the boundedness of the Dirichlet map D followed by the standard mean
inequality as well as the crucial estimates (2.71) and (2.62) (here we have not noted
the noncrucial dependence of € in the constant Cr ).

(A.51i) Dealing with | fo (Aw, 3D7"w)L2(p0)dt| By Lemma 2, Aw|, € L*(0,T; L*(Ty)),
and so with this bit of 1nf0rmat10n we have

T
/ (Aw, 8D70w> dt
0 W) L2y

T
<c / 1AWl e D0 2 e

(by the trace theorem)




STABILITY OF A THERMOELASTIC SYSTEM 179

dt
H2(Q)

T
= C/ AWl 2 () HD'VO (w(l) +w® +w(3)>‘
0

T T
€ 2 2 2
< 5/0 [Aw|lz2(p,) dt + Cry /0 10051 @)n L2y @+ 1@l 72 0,71 (0)

2
Fllwelleo,ry;z2 @) ]

C [E(T) + B, (0)]
(again using the mean inequality followed by (2.71) and (2.62),
and where the inverted positive constant C' is that in (2.24))

Ak R e d
< 2 Py H / 1 i
S [ A = APy,

2 2
2.73) +llwlz2 07501 @) + Iwellco, ;22 (0)) | + € 1E4(0) + E5(T)].
Combining (2.48), (2.72), and (2.73), we finally have

(6% T 2 2
S=8e) [ [lealiiaey + 719wty ot

T 2
< 36/ HA%wH dt+ Cr
0 L2(Q)

dt + Cr,

T
2
| 100,

2 2
+ lwllz2 0,78 ) + ”wt”C([O,T];Lz(Q))]

(2.74) +C [E,(0) + E,(T)].

(B) Conclusion of the Proof of Theorem 3. To majorize the norm of the component
w, we multiply (1.35) by w, integrate from 0 to 7" and employ Green’s theorem to
obtain (after accounting for the boundary conditions and using (1.20))

T T
_ pz2 ‘
)LZ(Q) 0 /0 H v

T2 T
= —/ HA%}’ dt—a/ (9, &u) dt
0 L2(Q) 0 8’/ L2(F1)

T

1 2

1 1
(P,Yz wi, PP w ooy ¥

since by the trace theorem we have pointwise

(5)
ov L2(y)

0w
ov

+ ’(V‘g, vw)Lg(Q)‘

<C el

H2Z(T) + ||9||H1(Q) ||W||H1(Q)]

HZ ()

2

1 2
@76) <0l Ilaoy < € |ALe] L, CellOlin @z, -

we thus arrive at the following.
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There exists a constant C' > 0 such that for ¢ > 0 small enough, the solution
[w,wy, 0] of (1.1) satisfies

T ) 2 T 5 5
(1- 6)/0 HAEWHI}(Q) dt < C/O |:||thL2(Q) + vath(sz)] dt

T
(2.77) +C </0 ||0||§11(Q)0L3+>\(Q) dt + E,(T) + E7(0)> ;

where the noncrucial dependence of C' upon € has not been noted.
Thus, if € is small enough, we then have, upon combining (2.74) and (2.77), the
existence of constants C' and Cr  such that

[ [Ia)

T
< Oy [ 160 sz, o @+ C LB (T) + B, (0)

2
2 2 2
Ty + 7 Vet oy + onm(m] dt

L2(Q)

2 2
(2.78) +Cr [”wHL?(O,T;Hl(Q)) + lwelleorr2@) | -

From here, we apply the relation (2.21) and its inherent dissipativity property
(that is, E,(T) < E,(t) Y0 <t < T) to (2.78) to finally attain the preliminary
inequality; namely, for T' > 2C (with C as in (2.78) independent of T'),

Ory +20n0 (T o
E,(T) < T 20 o H@HHl(Q)mLiH(Q) dt

2 2
(2.79) +Cray [l z0, iy + 1wt lEo zrzecan) -

A straightforward compactness—uniqueness argument similar to that employed in [15]
and [1] will subsequently eliminate the lower order terms in (2.79), viz. we have the
following proposition.

PROPOSITION 2.4. The presence of the inequality (2.79) implies that there exists
a constant Cp which satisfies

T
2 2 2
(2.80) wllz2(0.7 11 (0)) + lwtllcqo,m; m2@)) 4 < CT/O HGHHl(Q)ﬂLi_M(Q) dt.

Hence, the inequalities (2.79) and (2.80) give the desired estimate (2.36) (and
consequently (2.35)), and so the proof of Theorem 1.3 is now complete.

Note added in proof. As one reads through the arguments in the present paper,
he or she gathers the understanding that the key ingredient in our stability proof is the
selection of the “right” multiplier Az)l@ (which is novel when compared to the standard
differential multipliers used in plate theory). This multiplier was first devised in our
paper [3] (which initially considered the easier case of the thermoelastic plate with
lower order “clamped” or “hinged” boundary conditions), and we have since invoked
it in later problems (see [4], [13], [6], [5]. In particular, [4] is a preliminary version
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of our present paper). In our present paper, it is this particular choice of multiplier

which allows us to obtain sharp results on the uniform stabilization of thermoelastic

plates with the higher order “free” boundary conditions in place, results which include
the attainment of explicit decay rates.

Related work on this problem includes that of E. Bisognin, V. Bisognin, P. Men-
zala, and E. Zuazua in [7], who employed an alternative and indirect argument for
the stabilization of the nonlinear thermoelastic plate in the case of clamped/hinged
boundary conditions only. This method, even in the case of linear models, yielded
weaker results than those posted in [2], [3]. (We assume that at the time of their work
the four authors were unaware of [3].) Indeed, the indirect (proof by contradiction)
method in [7] has the following shortcomings:

(i) The method requires two different treatments of the problem, corresponding to
the respective cases v > 0 and v = 0. This dichotomy is necessitated by the
fact that the accompanying decay rates they obtain blow up as v | 0.

(ii) The decay rates they obtain are not explicit.

(iii) In the specific case v = 0, the analyticity of the underlying semigroup is used in
an essential way, which precludes the possibility that their indirect method
can be adjusted so as to give a unified treatment of the problem for all cases
~ > 0 (recall that v > 0 corresponds to hyperbolic-like dynamics).

In contrast, the paper [3] (which is critical and constitutes a basis for the present
paper) obtains decay estimates which are uniform in the parameter v > 0, this being
accomplished via the use of the multiplier A5;'6. As the authors of [7] were apparently
informed much before the date of submission of [23] of this comparison between their
work and that in [3] (this is a documented fact), one may then view as perplexing the
subsequent appearance of the paper [23], which now claims for itself the right (and
much improved with respect to [7]) result using the very same techniques and ideas
as in [3] (which again are radically different from those in [7]). In particular, [23] uses
the same multiplier and the same trace result, the latter being proclaimed therein as
“hidden regularity.” Perhaps adding to the perplexity is the fact that the two authors
in [23], while freely addressing the aforementioned shortcomings of 7], make neither
acknowledgment nor reference to [3]. Our main point here is to stress the fact that
the critical multiplier and the resulting technique for proving uniform decay rates for
thermoelastic plates takes its origin in [2], [3], and not in [23].
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STABILITY OF N-FRONTS BIFURCATING FROM A TWISTED
HETEROCLINIC LOOP AND AN APPLICATION
TO THE FITZHUGH-NAGUMO EQUATION*
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Abstract. In this article, existence and stability of N-front travelling-wave solutions of partial
differential equations on the real line is investigated. The N-fronts considered here arise as het-
eroclinic orbits bifurcating from a twisted heteroclinic loop in the underlying ordinary differential
equation describing travelling-wave solutions. It is proved that the N-front solutions are linearly
stable provided the fronts building the twisted heteroclinic loop are linearly stable. The result is
applied to travelling waves arising in the FitzHugh—Nagumo equation.
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1. Introduction. In this article, existence and stability of N-front solutions of
parabolic equations

(1.1) U =AU+ F(U,e), reR

on the real line is investigated. Here, the differential operator A generates a C°-
semiflow on BU (R, R™)—the space of bounded, uniformly continuous functions from
R to R™—and F is a superposition operator—that is, F (U, ¢)(z) depends only on
the values of U and possibly derivatives of U at the point z—defined on the same
space. Fronts and backs are travelling-wave solutions U(§) = U(x + c¢t) which are
asymptotically constant for £ — £oo. Transforming (1.1) into a moving coordinate
frame (z,t) — (z + ct,t) = (£, t) yields

(1.2) U= AU — cUe + F(U,e), 33

Then fronts and backs of (1.1) with wave speed ¢ correspond to equilibria of (1.2)
solving

(1.3) AU - cUc+ F(Uye) =0,
ggglooU(f) =Us.

Stability of a front U is often determined by the spectrum of the linearized operator
(1.4) LU)V =AV —cVe+ DyF(U,€) V.

A front or back is called linearly stable if the spectrum of L is contained in the left
half-plane with the exception of a simple eigenvalue at zero which is inevitable due
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simple front simple back N-front

Fi1G. 1. N-front solutions consist of 2N+1 concatenated copies of a simple front and back.

to translational invariance. Under rather general assumptions on A, linear stability
implies nonlinear stability; see [Hen81] or [BJ89].

Suppose now that for (¢, €) = (¢, €9) linearly stable front and back waves do exist
simultaneously. Then, upon varying u := (¢, €), other front solutions may arise. In
particular, so-called N-fronts which are formed by alternately concatenating 2N +1
copies of the simple front and back may bifurcate; see Figure 1. A natural and
interesting question is whether the bifurcating N-fronts Uy inherit the linear stability
from the simple front and back. For a fairly general class of operators A, it follows
from [AGJ90] that the spectrum of L(Uy) is bounded to the left of the imaginary axis
except for 2N +1 eigenvalues near zero. It therefore suffices to calculate these critical
eigenvalues, that is, solutions (A, V') of

(1.5) AV — ey Ve + Dy F(Uy,ex)V = AV

for A close to zero, where Uy is the N-front existing for (c,€) = (cn,€x).

Notice that the steady-state equation (1.3) and the eigenvalue problem (1.5) are
ordinary differential equations in the time variable £. As such they can be written as
first-order systems

(1'6) U= f(uvﬂ)’ u= (67 E)a
(1.7) 0 = (Dyuf(u, ) + AB) v,

respectively. Simple fronts and backs of (1.3) correspond to heteroclinic solutions
q1(€) and g2(&) of (1.6) connecting two equilibria p; and ps.

In this article, we investigate the existence and stability of N-fronts (and N-
backs) under the assumption that the simple heteroclinic orbits ¢; and g2 form a
twisted heteroclinic loop; see Figure 2. Under certain generic assumptions, we prove
existence of N-fronts of (1.6) for any N > 1 and determine all eigenvalues A\ of
(1.7) with |A| small. The N-fronts are either all stable or all unstable depending
only on conditions on the simple front and back solution. The proof relies on a
geometric reduction of the flow onto a two-dimensional invariant manifold containing
the heteroclinic loop; see [Hom96], [San93], and [San95]. The reduction allows for a
smooth linearization of the vector field near both equilibria. The existence of N-fronts
is then proved using the Lyapunov—Schmidt reduction for the resulting vector field in
R? in the spirit of [Lin90] and [San93]. Finally, the critical eigenvalues of the operator
(1.5) are calculated using [San96].

Deng [Den91a] proved the existence of N-fronts bifurcating from a twisted hetero-
clinic loop under the additional assumption that the stable manifolds of the relatively
contractive equilibria p; and p, are one-dimensional using topological methods; see
[Den9la, section 7(a)]. Shashkov [Sha92] asserts the existence of N-fronts for two-
dimensional vector fields of class C3, however, without giving a proof.
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F1G. 2. A twisted heteroclinic loop. The dashed curves indicate the stable manifolds of the
equilibria continued backward in time.

Finally, we apply the stability result to the FitzHugh—-Nagumo equation

U = Ugg T+ f(u) —w,
wy = €e(u—yw).

Deng [Den91b] showed that the hypotheses of his existence result [Den9la] are satis-
fied, while Yanagida [Yan89] proved that the simple front and back are both linearly
stable. Nii [Nii95b] proved linear stability of the 1-front provided f is linear near
both equilibria. We show that in fact all N-fronts are linearly stable. Recently, Nii
(personal communication) announced an extension of his result to N-fronts under the
same restrictive hypothesis on f using topological methods.

The paper is organized as follows. In section 2, we state the basic assumptions
and the main results about existence and stability of N-front solutions. The existence
theorem is proved in section 3, the stability result in section 4. Finally, in section 5,
the application to the FitzHugh—Nagumo system is given.

2. Main results. Consider the equation
(2.1) = f(u, ), (u, ) € R™ x R?,

where f: R" x R? — R" is C2?. We assume that equation (2.1) possesses two hyper-

bolic equilibria p;(u) and pa(p) for all p. Moreover, the spectrum o (D, f (pr (1), 1))

for k = 1,2 of the linearized vector field at these equilibria decomposes as follows.
(H1) We assume that dim W#(p1(0),0) = dim W?(p2(0),0) and

o(Duf(pr(p), 1)) = 03> U {=ai (u), ai (u)} Yoy, 0 < aj(p) <aj(p)

hold with Re o}° < —aj, (i), Reoj >aj(p) for k = 1,2 and all p. Moreover, —og (1)
and aj(p) are simple eigenvalues for k = 1,2. We define ax(n) = ag(p)/az (1) > 1.
Also, let oy, := o (0) and o, := a},(0) fori=s,u and k =1,2.

We choose coordinates such that the equilibria do not depend on p. Suppose that
for p = 0 there exist two heteroclinic orbits ¢1(¢) and g2(t) connecting p; to ps and
vice versa; see (H2).
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(H2)  The solution q1(t) satisfies limy_._ o, q1(t) = p1 and limy_ q1(t) = po
while qa(t) satisfies limy_, oo g2(t) = p2 and lim;_ o g2(t) = p1.

Due to hypothesis (H1), the next assumption is met for generic vector fields.

(H3)  The heteroclinic solutions q1(t) and g2(t) are nondegenerate, that is,

Ty W' (p1,0) N Ty 0yW?*(p2,0) = Rq1(0),
Ty )W (p2,0) N Toy(0yW?*(p1,0) = Rga(0)

hold.
Due to (H3), there exist two unique (up to constant multiples) bounded solutions
Y (t) of the adjoint variational equation

W = =Dy f(gk(t),0)" w

evaluated at qi(t) for k = 1,2, respectively. As a matter of fact, they satisfy

(2.2) Ui (t) L (TyeyW " (pr, 0) + T 1y W (pre1, 0)).

Here, the index k is taken modulo two. Upon changing the parameter y, the hetero-
clinic solutions g (t) should break up. This is made precise in the next hypothesis.
(H4) The Melnikov integrals

Neo= [ o), Durlan),0) e € B, k=12

are linearly independent (and in particular nonzero).

We need to assume that gx(t) and ¢y (t) converge along the leading directions to
the equilibria and zero, respectively.

(H5) Assume that the limits

: —apt _. : gt g _. +
lim oo e™ " gp(t) =: v, limg oo €6 +1% Gi(t) = v,

lim;_ oo ety (t) =: wf{, limtﬁooe‘xzﬂtz/)k(t) = Wy,

are nonzero for k = 1,2; see Figure 2. Again, the index k is taken modulo two.

Then v,:f and w,f are right and left eigenvectors of D,, f(pk,0) for the eigenvalues
apy”. Due to (2.2), hypothesis (H5) is equivalent to the strong inclination property.
Finally, we suppose that both heteroclinic orbits are twisted.

(H6) Suppose that the scalar products (w; , vy ) > 0 and (w;",v) > 0 are positive
for k = 1,2; see Figure 2. Note that the scalar products do not vanish according to
hypotheses (H1) and (H5).

Choose two sections X transverse to the vector field and placed at g(0) for
k = 1,2. We call the heteroclinic solutions ¢;(¢) and go(t) simple fronts and backs,
respectively. An N-front solution is a heteroclinic orbit connecting p; to ps and
intersecting 3o N-times; see Figure 3. In other words, it follows the heteroclinic loop
N +% times and hits the set X7 U X9 2N +1 times. Similarly, N-backs are defined
connecting ps to p;.

Associated with each N-front are 2N return times 7} for j = 0,...,2N—1. With
l=0,...,N—1, the numbers Ty; are the times consecutively spent between ¥; and
39, that is, near the equilibrium py, while T5;41 are the times spent between X5 and
Y1, that is, near the equilibrium p;.

We remark that, on account of hypothesis (H4), there is a change of parame-
ters of class C? such that the Melnikov integrals coincide with the coordinate axes
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1-front

Fi1G. 3. An N-front solution for N = 1. There are two return times To and T1 associated with
the 1-front. Ty is the time spent between X1 and X2, while Ty is the time spent between Yo and X1.

s 2-front

1-front 3-front pr-pulse

po-pulse
simple front

3-back
2-back
1-back

simple back 1

F1G. 4. The bifurcation diagram. The parameters have been transformed such that a simple
front (back) exists precisely when p1 =0 (pu2 = 0) and such that the Melnikov integrals are given by
N1 = (1,0) and N2 = (0,1). The twisted heteroclinic loop exists for p = 0.

in R?, that is, Ny = (1,0) and Ny = (0,1), and that simple fronts (backs) exist
precisely when 1 = 0 (u2 = 0); see Figure 4. We refer to section 3.2 for the
proof.

The first result is an extension of the existence theorem proved by Deng [Den91al,
who assumed that the unstable manifolds are one-dimensional.

THEOREM 2.1. Assume that (H1)-(H6) are satisfied. Then, for each N > 1, there
exists a unique curve fix(r) in parameter space defined for r € [0,7¢) with fix(0) =0
such that (2.1) has an N-front solution (u, 1) if and only if there exists an r such that
p = fix(r). The N-fronts are unique and the curves jiy are of class C*. The return
times (as defined right before this theorem) of the N-fronts are given by

Ty, = —% (I+0(1)) Inr, time spent near pa,
2
(2‘3) _ astOn_y

Topr = —=2FL(1+0(1)) Inr, time spent near p;

s
ag
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forl=0,...,N—1 asr — 0. Here, the sequence 0; is defined recursively by 6, = 0,
0y = ajas — 1 >0, and 0141 := a10; + 02 > 0;. Different choices of the sections Xy,
do not change the leading order term in (2.3). Analogous results hold for N -backs.

Now, assume in addition that parameters have been transformed according to the
remark stated Tight before this theorem. Then the curves fiy satisfy

fin(r) = (r** (1 +o(1)),7)

as v — 0, and the bifurcation diagram is given in Figure 4.
Next we describe the bounded solutions v € C*(R,R™) of the equation

(2.4) 0 = (Duf(gn (r)(t), iin(r)) + AB(t))v

for A € C with |A| small, where gy(r) denotes the N-front existing for u = fiy(r).
Here, B is a bounded, continuous, and matrix-valued function. Equation (2.4) is a
generalized eigenvalue problem of the form

Lv = ABw.

Generalized eigenfunctions of (2.4) corresponding to an eigenvalue A are functions v;
satisfying

Lv; = ABv; + Bv;_4

with vy = 0. The algebraic multiplicity of eigenvalues can be defined in the usual way.
We assume a nondegeneracy assumption with respect to A.
(H7) Suppose that the Melnikov integrals

Mici= [ (0. B ule) de #0

are nonzero for k = 1,2, where vy, is chosen according to hypothesis (H6).

The next theorem—which is the main result of the present paper—describes the
set of A € C with |A| small for which (2.4) possesses a bounded solution v.

THEOREM 2.2. Suppose that the assumptions (H1)-(HT7) are satisfied. Then there
exists a 6 > 0 independent of N such that the following holds. For any N > 1 and
ro = 1o(IN) > 0 sufficiently small there exist precisely 2N +1 solutions (\j,v;) €
C x CHR,R™) of (2.4) with |\| < &. The eigenvalues are counted with multiplicity
and are given by

Aoy—1 = (ca—1+o(1))r,
A2t = (car 4 o(1)) roztonn,
Aoyt1 = 0
forl=1,...,N as r — 0, where the exponents 0y1_; have been defined in Theo-
rem 2.1.
The constants c; are nonzero and satisfy signcy = sign My and signcy_1 =

sign My. In particular, the eigenvalues \; are contained in the left half-plane for
j=1,...,2N provided My, My < 0 are negative. Analogous results hold for N-backs.

The second theorem establishes stability of the N-front solutions with respect to
the underlying partial differential equation; see section 5 for an example.

Notice that there exist precisely two pulses converging to p; and ps, respectively;
see Figure 4. The existence proof is implicitly contained in section 3.3. As far as their
stability is concerned, the same statement as for the N-fronts holds. This follows from
[Nii95a] or section 4 of the present article.
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3. Existence. In order to prove existence of N-fronts, a geometric reduction
onto a two-dimensional invariant manifold in phase space is employed. The manifold
is diffeomorphic to an annulus. Next, a system of 2N +1 equations is derived using
the Lyapunov—Schmidt reduction applied to the flow on the invariant manifold. In
the final section, this system is being solved for using an implicit function theorem.

Throughout we assume that hypotheses (H1)-(H6) are met.

3.1. Center-manifold reduction. We have the following lemma.

LEMMA 3.1. There exists a two-dimensional, locally invariant, and normally
hyperbolic manifold Wf,, C R™ of class C1* jointly in (u,u) for some p > 0. All
solutions staying near the heteroclinic loop for all times and for parameter values close
to zero are contained in Wy, . The manifold is homeomorphic to an annulus.

Moreover, the flow restricted to Wf,, = —is Ct-conjugated to the flow of an appro-
priate vector field g(u, 1) of class C' defined on R%. The hypotheses (H1)—(H6) are
still satisfied for g and, in addition, g is linear locally near both equilibria.

Proof. The existence of W[ is an application of [San95, Theorem 1]. We shall
verify the assumptions of that theorem using the decomposition

O—(Duf(pkvo)) = 0723 U 013 U U;cLuv O—Ii = {70‘23041;}'

Then [San95, (H1), (H3)] are satisfied due to (H1) and (H5), while [San95, (H4)] is
void. It remains to verify [San95, (H2)] which reads

Tg W™ (p1) © Ty W™ (p2) = R,
Tq W= (p1) @ T, W™ (p2) = R,

and the analogous condition for go(t). Here, W™35(py) denotes an invariant mani-
fold tangent to the generalized eigenspace E***¢ associated with ¢5° U o5 at ps and
similarly for W#*%*(p;). On account of (H1), it suffices to prove that

3.1) To )W (p1) N Ty )W (p2) = {0},
qu(O)Ws,u,uu(pl) N qu (O) Wss (pz) — {0}
We have
T W™ (p2) = Ty, (0)W* (p2) ® R
for some nonzero v*. On account of (H3) and (H5), the intersection

To, W™ (p1) N 1o, )W (p2) = {0}

is trivial. Therefore, if the first equation of (3.1) does not hold, there exists a vector
w € Ty, (0yW?*(p2) such that

v +w € qu(O)Wuu(pl) n qu(o)Wu’S’ss(pg).

Let v*(t) and w(¢) be the solutions of the variational equation along ¢ (t) satisfying
v"(0) = v" and w(0) = w. Choose ¢;(0) close to pa, so that Ty, (o)W™***(p2) is close
to E™*%5 . Then, due to (H5), (¢1(0),v") # 0. However, the solution v*(t) + w(t) €

Tg, (tyW*"(p1) decays exponentially to zero for ¢ — —oo, while

(), 0 (1) + w(t)) ) (1), 0" (1)) = ($2(0),0"(0)) # 0
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¥1(2)

2

Yo

F1G. 5. The choice of the sections in R%2. The arrows denote the positive direction once sections
are identified with intervals in R.

is independent of ¢ as 1 (t) solves the adjoint equation. This is a contradiction to
11(t) being bounded; thus

qu(O)Wuu(pl) n qu(o)Wu’s’Ss(pg) = {0}

The argument for the second equation of (3.1) is similar. Thus we can apply [San95,
Theorem 1] to conclude the existence of an invariant manifold Wy, .. Moreover, by
the construction in [San95], W, is homeomorphic to an annulus owing to (H6).
That the flow on W, is C'-conjugated to the flow of a C'-vector field in R? follows
from [San95, section 3.5]. The statement about the smooth linearization is proved in
[Hom96, Proposition A.1.1]. 0

Hence we can restrict the analysis to a C'-vector field ¢ in R? satisfying (fﬁ),
(H2)—(H6), and being linear locally near both equilibria, where hypothesis (H~1) is
given by the following.

(H1) We assume that dim W*(py,0) = dim W*(p2,0) = 1 and

o(Duf(pr(p), 1) = {—ag(n), ag ()}, 0 < aj(p) < ag(p)

hold for k =1,2. We define a(p) = ot () /g (1) > 1.

3.2. Lin’s method in R2. According to the last section, it suffices to consider
a vector field

(3.2) i = g(u, ), (u, ) € R x R?,

with g € C! such that (fﬁ) and (H2) up to (H6) are satisfied and the flow near the
equilibria py for k = 1,2 is linear. Choose Poincaré sections ¥, and X, for k = 1,2 as
in Figure 5. All sections are chosen inside the regions near the equilibria p; where the
flow is linear. Moreover, we shall identify the one-dimensional sections with intervals
in R as shown in Figure 5. Next, we compute various Poincaré maps. Denoting the
time spent between X1 and Yo by T, the map from ¥; to s is given by

2:1 - 22 )
—ay(u)T —a5 ()T
e 5 (1) — e 5(m) ,

(3.3)
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using the fact that the vector field is linear. Similarly, the map from Y5 to % equals

i2 - S17

(34) efaqll'(/")"' — @704(”)7'.
The maps

I D> b))
(3.5) k(u, ) ko k>

u = —Ilg(u, p) + di(p)

are diffeomorphisms with Iy (u, ) € Ct, Hg(0,u) = 0, and D,II;(0,u) > 0 for
k =1,2. The minus sign before the term T (u, 1) appearing in (3.5) is a consequence
of hypothesis (H6); see Figure 5. Due to hypothesis (H4), we may assume that
d(1) = px by a Cl-transformation of parameters. Indeed, with u}(u) € W¥(py, i)
and uj () € W?*(pg, 1) chosen properly, and after possibly shifting time such that
qx(0) € X, the separation function dy(p) = (¥ (0), uf(p) — uj (1)) measures the
signed distance of the one-dimensional stable and unstable manifolds of the equilibria
at the section Xj; see, for instance, [Kok88], [Lin90], or [Den91b]. The integrals Ny
appearing in (H4) are in fact the derivatives of di(u) at g = 0. For consistency
with the remark stated before Theorem 2.1, we note that parameters can be changed
in the original system before applying the center-manifold reduction resulting in a
C?-transformation.
Summarizing the above, we obtain a map

Z2 - Zla
(3.6) . o
Ly (e ) sy o I (e ) 4 .

All solutions being mapped from Y5 to X7 are captured by the above parametrization.
The next step consists in formulating the Poincaré map by means of the return time
with respect to the sections X instead of the one for 3j.

The times needed for initial points u € % to reach the sections ¥ are given by
functions Q(u, ). Both functions Q(u, i) are in C' and bounded uniformly in wu.
Thus the time T needed for the initial point

—Hg(e_a?(“)ﬂu) + pig € Ty
to reach
—Hl(e"‘i("ﬁ,u) + 1 €34
is given by
T =1+ Ql(e*af(H)T, 1) + Qz(efa’f(u)f’ 1).

By the implicit function theorem, we can solve this equation with respect to 7 yielding
a C'-function 7(T, u), with

(3.7) (T, p) =T — (e T TR ) — Qoem i) ),

Therefore, we obtain the following lemma.
LEMMA 3.2. The Poincaré maps from 31 to Yo and vice versa are given by

2:1 - 227
e—as(WT , p—os(w)T

(3.8)
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and
22 - Zl )

3.9 u s
(3.9) —I (e~ W8 ) 4oy = =TI (e W 7Ty 4y

respectively. The C'-function (T, n) defined in (3.7) satisfies

%T(T,/J) -1 k1,
and the Ct-maps Qu(u, ) are bounded uniformly in u. Moreover, Iy (u,u) € Ct,
I, (0, ) = 0, and D, J(0,u) > 0 for k = 1,2. Up to this point, the construction
looks pretty much like using Shilnikov variables. However, in order to describe solu-
tions following the original heteroclinic loop several times, we shall adopt a boundary-
value-point-of-view. That is, we are not going to iterate the Poincaré maps given in
the previous lemma, but shall derive matching conditions in the sections.

Using Lemma 3.2, the existence of N-front solutions is equivalent to the existence

of return times 7; < oo for j =0,...,2N —1 and parameter values p such that
e—os(W)To  — i,
em T = —Iy(em i (W Trttst) ) + pip, j=0,....N-1,
(3.10) e—a;‘(u)sz —_ _Hl(e—af(u)T(sz71,H)7M) + 1, J =1,... , N — 1,
0 — 7H1(e*ai(H)T(T2N—1’#), ,U) + 1

holds. Indeed, then the various pieces of solutions defined in between the sections will
fit together. Moreover, the first and last equation assert that the solution is contained
in the unstable and stable manifolds of the equilibria p; and ps, respectively. In fact,
T5;4+1 and Ty; are the times spent near the equilibria p; and p,, respectively. Define

agiv1 s = e @i T(Tzjt1.n) s = e~ i) T(Ten—1.p)
(3.11) 20+ : ,
ag; T = 6_0‘2(”)T2-7, r = e~ 2WTo
for j =0,...,N—1 such that ag = asy_1 =1 and aq,...,asy_2 are bounded. In the

new variables a;, r, and s, equation (3.10) reads

ro2ln) — gy = 0,

7+ T2 ((a15)* ), 1) — po = 0,
(3.12)  (agr)®2®W + Ty (agj_18, 1) —p1 = O, j=1,...,N—1,
agjr +o((azj18)* W, p) —po = 0, j=1,...,N—1,

i (s, ) — g1 = 0

with ag(p) = o () /(1) > 1. Whenever (aj, 7, s) solve (3.12) such that a; > 0 and
r,s > 0, we obtain associated return times T; < oo which solve (3.10) by using (3.11).
Indeed, we have

(313) T(Tojr1,1) = —mln(aszS)’
' ng = _76@1(#) ln(ang),

and Lemma 3.2 implies that 7(7, u) is invertible with respect to T'. Hence, it suffices to
consider (3.12) keeping in mind that only positive solutions of this system correspond
to solutions of the original problem.
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3.3. Existence of N-fronts bifurcating from a twisted heteroclinic cycle.
We shall solve (3.12). Note that the functions II; and Il are in C'. By convention,
for a > 1, define z® to be zero for negative values of x yielding a C'-function, too.
Then (3.12) is defined for all a; bounded and r,s small including negative values.
Throughout this section, the range of the index jis j =1,..., N—1.

First, solve

ro2(p)

H1
i(s,p) = ro2

)

(3.14)

with respect to (11, $) near (r, s, ) = 0 by the implicit function theorem using Lemma
3.2. Denote the solutions by g1 (u2,7) and s(ug,r), both of which are of class C?.
Observe that, owing to IT; (0, ) = 0, the estimates

(3.15) [5(p2s7)|s [ Dy s (2, 7)| < Csr2=0

hold for arbitrary small positive §. Using the ansatz us = er, the second equation in
(3.12) reads

(3.16)  r4+Ta((ars) ™, p) —po = r+1Ia((ags(er, ) ) (er, 1), er)—er =0.

Here and in the following, we will be a bit sloppy concerning the dependence of ay (1)
and II; on € and r to avoid unnecessary complicated notation. Dividing (3.16) by r
yields

(3.17) 1+ r o ((ars(er, ) ) (er, 1), er) —e=0,

which is C1 in (e, a;) for 7 > 0 owing to (3.15) and since the dependence on € is due
to pe = er. Using (3.15), we can solve (3.17) with respect to € near e = 1, r = 0, and
arbitrary bounded a; yielding a C'-function

(318) €= 6(&1, 7‘) =1+ T71H2 ((alg(aly T))&l(al’r)7 ﬂl(alv T)v 6((11, T)T)’

where
S(ar,r) = s(e(ar,r)r,r),
ar(ar,r) = ag(e(a,r)r,r),
lal(alar) = ,LL1(€(0,1,7’)7’,7‘).

Notice that the dependence of all these functions on a; is due to terms of the form
€(ay,r)r. It remains to solve the system

Hl (a2j71§(a177ﬂ)7ﬂ(a177’)) + (a‘2jr)&2(a177.) - ﬂl(alar> = Oa
ag;r + Hg((a2j+1§(a1, r))erenn) fay, 7‘)) —e(ar,”)r = 0
for j =1,...,N—1. Dividing by #®2(¢0:") and r, respectively, yields

7.7642((11,” Hl (a2j71§(a1, 7‘), ﬂ(al, ?”)) + a254j2(a1,7") —1 0,

ag; + 1My ((azj+18(ar, 7))@ fi(ay,r)) — e(ar,r) =

(3.19)

The functions

r=%2(0 0T (ag;-13(ar, ), filar, 7)),
r My ((agj—13(ar, 7)* @0, fi(ay, )
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are C! in (agj—1,a1) up to r = 0 owing to (3.14) and the above comment about the
dependence on a;. Moreover, the derivative with respect to ag;—1 at r = 0 equals one
for the first and zero for the second function. Therefore, as; = 1 and agj—1 = 0 for
j=1,...,N—1solve (3.19) with r = 0, and we can use the implicit function theorem
to obtain solutions ag;(r) and ag;_1(r) for positive r.

It remains to show that ag;_1(r) > 0 is positive for r > 0. Define constants -,
recursively by

v = 0,
(3.20) Yn_-1 = ajag —1>0,

V-1 =it YN-1 >
for j =1,...,N—1. These constants are related to the numbers 6; via
(3.21) Y = Ont1-j-

We will, however, work with the «; in order to keep the notation simpler. Let

agj—1 = boj_177,
(322) 25—1 25—1 ‘
agj = 17b2j ri

for j=1,...,N—1, and set boyy_1; = 1. Substituting these expressions together with
(3.18) into equation (3.19) yields

= 7O (byy 17795(by, 1), by, 7)) — 14 (1 — boyr) 82 (ber),

= by 4 (Ta (b7 30, 7)) 1) by, 7))
— Iy ((baj 177741 5(by, 7)) 01017 fi(by, 7)),

where
$(br,r) = s(e(byr™,r)r,r),
(3.23) a(by,r) = ag(e(byr,r)r,r),
. ﬂl(bl’r) = /ufl(c(blrV ,T)Tv T),
fia(b1,7) = e(byr™,r)r.

Dividing these equations by r7% reads

0 = T‘i(dz(bl’r)Jr’Yj) 11, (bgj_lT"ng(bl,T),ﬂ(bl,T))
+r=((1 - bors )2 (i) 1),
— b2, 4 T—(l"t"Yj) (H2<(b17«71 A(bl T))&l(b1,7~)7 ﬂ(bh T))
_HQ(((,QJHMJH (by, 7)) (01r) ﬂ(bh?”)))~

(3.24)

As before, using the recursive relations (3.20), it is tedious but straightforward to see
that the functions appearing in (3.24) are C! up to r = 0. Moreover, for r = 0, (3.24)
boils down to

i=1,...,N—1,
i=1,...,N -2

b1 — a2 by; =
(3.25) bgi - DuH2(07 O) DuH1(07 O) o bgzl-i-l =
bon—2 — DuH2<0’O) D, 11, <0’O) o =

)

o o o
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owing to (3.14). It is straightforward to check that the Jacobian of (3.25) with respect
to (bj) is upper triangular with nonzero diagonal elements. Equation (3.24) can
therefore be solved near

bon—2 = DIl (Oa 0) D, 11 (O’ 0)7(11’
(3.26) b1 = aobyy, 1=1,...,N -1,
bai—e = ban—2b5' i=2,...,N—1
by invoking an implicit function theorem. This proves that
azj—1 = (bgj—1+o0o(1))rs,
(327) 2j—1 ( 2j—1 ( )) .
azj = 1—(bg; +o(1))r"

holds for j =1,...,N—1. In particular, as;_1(r) > 0 is positive for r > 0 thanks to
(3.26) and Lemma 3.2.

The expansion (2.3) of the return times is now an easy consequence of (3.13) and
(3.27) using the relation (3.21) of ; and 6;.

Finally, we prove the claim about the ordering of the bifurcation curves in Figure
4. Summarizing the results obtained thus far and using the exponents 6; instead of

~;, the bifurcation curve fiy(r) for N-fronts is given by
(3.28) pa(r) = TO‘Q(M(T)#Q(T))’
pa(r) = 1+ (Cy+o(1))ror @240 = v 4 py(r)

for some positive constant Cy. Indeed, the first equation is (3.14), while the second
is obtained by substituting (3.27) for j = 1 and the solution s(ug,7) of (3.14) into

(3.16). Define the function fi; (r) by solving
g = re2(far)

with respect to fi;. This definition allows us to separate the parts of fiy(r) which are
independent of N from those which are not. Write

(k1 p2)(r) = (fua(r) + o, 7+ pu (7).
Then, using (3.28), a straightforward calculation shows that
G_N(,r,) — O(TQQ(ﬂl(T),T) ra1(a2+01\7)76),

where § > 0 can be chosen as small as we wish. Thus, the bifurcation curve fiy(r) for
N-fronts is given by

Ml('f') = ,ra'z(ﬂl(r),r)(l + O(To‘l(o‘2+0N)_5)),

pa(r) = 14 (Cy +o(1)) realezton),
As the exponent aq(ag + 6y) is larger than one, it is possible to write r as a function
of ua:

r(2) = 2 = (O + o(1) g1

for po > 0. Therefore, using that 6 > 0 can be chosen smaller than one, we obtain

& a1 (a 1\ Gz2(pz) a1 (a —
[ = M22(#2) (1 —(Cy _’_0(1))”21( 2+0n) 1) (1 +O(M21( 240n) 6))

Gz (p2) (

= s 1(az+0n)—1 +O<M;¥1(a2+91\r)*5)>

1 — dia(p2) Cy py
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F1G. 6. Description of N-front solutions for N = 1.

with éa(u2) := as(fi1 (r(pe2)), r(ue2)). Now, the claim about the ordering of the curves
fix(r) is an easy consequence of the fact that 0y is strictly increasing in N.
Hence the proof of Theorem 2.1 is complete. ]

4. Stability. This section is devoted to the proof of Theorem 2.2. The basic
technique used is Lin’s method applied to the eigenvalue problem (2.4). We shall
use the abstract results from [San96] together with certain modifications needed in
the present situation. As for the concrete bifurcation investigated here, we are again
going to exploit the reduction to a two-dimensional invariant manifold. Finally, the
eigenvalues of the resulting tridiagonal matrix are calculated.

Throughout we suppose that hypotheses (H1)—(HT7) are met.

Convention. Throughout this section, we use the convention that the ranges of
the indices 7 and j are ¢ = 1,...,2N+1 and j = 1,...,2N unless stated otherwise.
Moreover, we define imod 2 € {1,2} by convention. The Landau symbol o(1) is taken
with respect to r — 0.

4.1. Abstract reduction of the eigenvalue problem. We consider equation
(2.1) and (2.4) in R™ keeping in mind that the N-fronts are actually contained in the
invariant C'-manifold W§. .- We also extend the sections ¥y, for £ = 1,2 to sections
in R™ without changing notation.

Any solution with initial point in ¥, and end point in Xy, is uniquely described
by the associated return time 7. In particular, any N-front gy (t) is determined by
2N return times Tj for j = 0,...,2N —1; see Theorem 2.1 and the proof in the last
section. Define ui (t) by

i—2 - 1
U; (t) for t € [—ETi_27O],
(4.1) q (t + T—) -
Y ; ! uf(t) forte|0,37Ti4]
fori=1,...,2N+1 and with T_; = Ty = o0; see Figure 6. As gx(t) is a solution of
(2.1), the functions u satisfy

<4

—

=

=
\

u; (0), i=1,...,2N +1,

Uu,
(4.2) 3 |
“;r(%Tj—l) = Uj+1(—%Tj—1)7 j=1,...,2N.
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The eigenvalue problem (2.4)
o= (Duf(qn(t), fin) + AB(t))v, teR

can be written as

Ui = (Duf(ug (t),ix) + AB(t)) v; for t € (—1Ts_5,0),
13 0 (Do f(uf (t), fix) + AB(t)) v for t € (0,1T;_1),
e = o
vf (3T-1) = vja(=5T-0),

considered as equations over the complex field. Exploiting the fact that ¢y (t) solves
(2.4) for A = 0 and using (4.1), we take the ansatz

vE(t) = 0E () di + wE(t),

with d; € R. On account of [San96, section 3.1] and (4.2), equation (4.3) is then
equivalent to

W = (Duf(u(t), fiy) + AB(t)) wE + X B(t) uE(t) d;
fort e (—%Ti,g,O) and ¢t € (0, %Ti,l), respectively,
(4.4) wi (0) = w; (0),
wli(O) € Ximona
wi(3Tjo1) = wyyy(=3T5-1) + a5, (=5T5-1)(dj1 — dj),

where the (complexified) subspaces X}, are defined by %5 = ¢ (0) + X, for k = 1,2.
Following [San96], we shall investigate the system

Wy = (Duf(ui (t), ix) + AB(t) wi + A B(t) i (1) d;
for t € (—%Ti,Q,O) and ¢ € (0, %Ti,l), respectively,

(4.5)  w(0)—w;(0) € (CTuj(O)W,fom(ﬁN) N Ximoaz = C,
wiE(0) € Ximodz2,
wi(3T5-1) = wiyy(=5T-1) + a5, (=375 -1)(dj1 — dj).
Define the signed distances
(4.6) §i = (Yimoa2(0), i (0) —w; (0)) € C;

see Figure 5. Then we have the following lemma.
LEMMA 4.1. FEquation (4.5) possesses a unique bounded solution w = W(A)d
linear in d and analytic in X\. Moreover, w solves (4.4) if and only if

(4.7) E=S\)d=(A(r) = A(M +0(1)) + O(]A]*))d=0
for some analytic, matriz-valued function S(\) and
M = diag(MlKl, MQKQ, “ee ;MlKl)

with Ky, Ko > 0 positive. The matriz A(r) is determined by (4.5) with A = 0. Any
solution of (2.4) with |A| small is given by the above function W (X). In particular,
d=(1,...,1) solves S(0)d = 0.
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With the equivalence of (2.4) and (4.1) as well as Lemma 4.1 at hand, it therefore
remains to solve the reduced equation

(4.8) det S(\) = 0.

Proof. The proof of the lemma is essentially contained in [San96], where the
analysis was done for N-pulses. We will briefly mention the changes needed here.

The hypotheses (H1) and (H3) ensure that the technique developed in [San96)
works in the present context. The only difference is that the linearized flows for the
heteroclinic solutions are used instead of linearizing along a single homoclinic orbit.
The major change made here in comparison with [San96] is that we allow for jumps
in

w;(0) —w; (0) € CTU;(O)Wﬁom(ﬁN) N Ximod2 = C

compared with jumps in C(0)
w; (0) = w; (0) € Cthimoa2(0),

where v (t) are the unique bounded solutions of the adjoint equation; see section 2.
However, the only property of Ci,(0) used in [San96] is the transversality condition

Repr(0) & Rx(0) @ Ty (o)W (k) © Ty ()W (Pr41) = R”
for k = 1,2; see [San96, Lemma 3.5]. The corresponding relations
(T, (0) Whom () N Xie) © R (0) © Ty o) W™ (Pr) © T (0)W** (Pryr) = R”

are satisfied where k£ = i mod 2. Indeed, this is a consequence of (2.2) and the proof of
Lemma 3.1. The statement about the matrix M follows from [San96, Lemma 3.6] and
the above discussion. Indeed, taking the limit » — 0 is equivalent to computing the
matrix M by investigating the eigenvalue problem (2.4) for the primary heteroclinic
orbits g (t) for k = 1,2 as u; — ¢ mod 2 for r — 0 in the sup-norm. The positive factors
K and K3 stem from the projection of 4 (0) onto the tangent spacesTy, o)W}, for
k=1,2. d

4.2. Determining the reduced problem using center-manifolds. In order
to solve (4.8)

det S(A) = det (A(r) — A(M +o(1)) + O(]A]*)) = 0,
we have to determine the matrix A(r). By definition, with A = 0,

€ = ((¢imod2(0), w (0) — wy (0)))i=1,...2n41 = A(r) d,
where w = W(0) d solves (4.5) with A = 0; that is,
(i) Wy = Duf(uifin) wi,

for t € (—%1}-,270) and ¢ € (0, %Ti,l), respectively,

(i) w(0) —w; (0) € CT it (0)Wiom (i) N Ximod 2,
(iii) wE(0) € Ximod2,
)(iV) wi(3T5-1) = wiyy(=3T-1) + a5, (=3T 1) (dj1 — dj).
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Therefore, the solutions w; have to solve the variational equation along the N-front.
Since W, is locally invariant and C?, its continuous tangent bundle is invariant
under the linearized flow. Since u; € Ty, W, and the jumps of w; are required to
be in Ty, W£,,.,, too, we expect that the solutions w; € T, Wy, . are contained in the
tangent bundle as well. By uniqueness of w as stated in Lemma 4.1, it is therefore
sufficient to prove that we can solve (4.9) with w; € T,,,W,,,. Since the linearized
flow is still C%-conjugated to the linearized flow in R?, see Lemma 3.1, it suffices to
consider (4.9) for the vector field in R? investigated in section 3—note that we do not
need any differentiability further on.
Hence consider w € R? from now on. Denote the evolution of

i = Dy f(uF (1), fin) w

by ®F(t, s), then w (t) = ®E(t,0) wi (0) solves (4.9)(i) and (iii) for arbitrary w (0) €
Xj. Note that (4.9)(ii) is then satisfied, too, as the subspaces X; C R? are one-
dimensional. We shall solve (4.9)(iv)

(4.10) wy (5Tj-1) = wiy (—5T51) + a5,y (—5Tj-1)(djr — dy)

for given d = (d;)i=1,... 2n+1 and j = 1,...,2N. Observe that these equations decouple

yer

+

as we can choose w; (0) € X}, arbitrarily.

First, consider (4.10) for odd j = 2I+1 for [ =0,..., N—1. Then

4 -~ efag(ﬂ)t 0
(I)ZlJrl(tv 0) = (1’21+2(t7 0) = 0 0% ()t
as the flow is linear. Also,

iy o(—3T0) = (—ag(p) e 30200 T2 (1) e~ 202 () Tar)

and
1hu
w;_l-i-l(%Tﬂ) = (0,ez3 (W w;l+1(0))7
_ 18

w2l+2(*%T21) = (exo(WTx Wy 45(0),0),

identifying the subspaces X with R as in Figure 5. Thus, we conclude that
w1 (0) = ag(p)e 2T (dy o —dyyr) = ofr) (dape — daita),
(411)  wy,,(0) = a3(p)e 2T (dyyn — dogy)
= a3 (1+0(1))r (dart2 — daig1),

using (3.7) and (3.27).
Next, consider (4.10) for even j =2l for I =1,...,N. Then

N e—a1 (W) (t—Q2) 0 .
2 (t,0) - 0 e01 (1) (t=Q2) 3622, 0),
B et (1) (=t+Q1) 0 N
®y11(=1,0) = 0 et (n)(=t+Q1) o421 (=,0)
for t > 0 large and with
0, = Ql(e*a‘f(#) 7'(712171,#)7 M)’

Qy = Qe @t W T(Tar-11) )

b
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see section 3.2. Therefore, we obtain

1 () (=11 14Q2) Y () (2T221-Q
w;_l(§T2l—1) = (erim(=3Taa+ Q)WSzaeal(”)(Q 21-1 Z)FZWJI(O%

_ s (L _ w1 _

w21+1(_%T2l—1) = (eoﬁ(ﬂ)(gTZl—l Q1) W;l+17 et (W) (=3 T21-1+81) ﬂ-gl+1) w2l+1(0)
for some constants 77]2617 7r§l 41 uniformly bounded in T%;_; for k = s, u such that
(4.12) Ty, Ty < —6 <0

for some 6 owing to the sign convention for the sections—we identify the subspaces
X with R in the same way as we did for X;; see Figure 5. The time derivative is
given by

iy (=3 To1o1) = (—of () e TG T 02 g () emed (DT =60),

Thus, (4.10) reads
( —e WG Ta-1 =) g 6ai(u)(éTzl—1+Qz)ﬂ§l>< w3;(0) )

N 1
,ea?(u)(*iTm—lJrQl)Wng et (W To1=02) w;l-&-l(o)

21

—as(p) e~ 1 (1) (5T21-1—Q2)
quf(u) et () (3T21-1—1)

) (dor41 — da),

and it is straightforward to calculate that for some § > 0

w2+l (0) au(ﬂ) e~ (1) (Tai-1—021—Q2) Y (1 + O(e*5T2z—1)) (d2l+1 _ d2l)
a“(y/) e~ 1 (W) 7(T21-1) 7y (1 + O(e_éT(TZl—l))) (dor1 — d2l)
o(re= ™) (dar41 — dar),

1
1
i(ﬂ) e~ 1 (1) (T21-1—021—Q2) WSZ-H (1 + 0(6_6T2‘*1)) (d2l+1 _ d21)
1
1

4.13
( )w;z+1(0)

|
Q

af(p) et =) 75 (14 O(e 7 T2=1))) (dyr 11 — do)

af (b1 + o(1)) w54y 2 (darr — da);

see again (3.7) and (3.27). It is convenient to check the signs appearing in (4.11) and
(4.13) by inspecting Figures 5 and 6.

Thus, the differences of w(0) for i = 1,...,2N+1 with A\ = 0 are given by
wy;(0) — wy(0) = o(r**™) (dar+1 — dot) — @3 (L +0(1)) r (dar — dai—1),
w1 (0) — wyy 1 (0) = o(r) (a2 — da41)

i

—a$ (by—1 +o(1)) w5, 4 72T (dyry1 — doy),

and the jumps &; read

G = (12(0),wy(0) —wy(0)
= r(o(r®= ™71 (da1 — do) + a3 (1 +0(1)) (do — dai-1)),
(4.14) &1 = (1 O)aw;rl+1(0) - w;l+1(0)>

1) (doi42 — dory1)

(bai—1 +0(1)) w5y 4 72 (dopy — don)).

= AN o~ A~ —

—
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Notice that the sign changes in the first equation since ¥9(0) points in the negative
direction of Xs; see Figure 5. We rewrite (4.14) according to

€a1 = r(—Ro_1dy_1+ (ka1 — Roy) dog + Foy dary1),

Cur1 = 1 (—kaudy+ (ko — Ray1) dary1 + Raig1 dorye),

using the definitions

Kol—1 = C21—1+ 0(1) = ) (1 + 0(1))7
Koi—1 = o(1),

(415) 0 5 . s et
K2j = (ca+o(1)r? = —aj(by-1+o(1))ms  r="

Fo = o(r?) = of(reztm—l)
fori=1,...,N and
Ko = Ko = Kan41 = Rant1 = 0.

The exponents ; and the constants c; satisfy

Br=az+y—1, l=1,...,N,
(4.16) O0<ap—1=0y < <pfi_1, l=2,...,N—1,
c; >0, i=1,...,2N,

due to (3.20), (3.26), and (4.12).
Therefore, we end up with computing solutions of

(4.17) det (rA(r) — MA+ O(|A|(|]A| + o(1)))) = 0,
where

M = diag(M 1 Ky, M3Ks, ..., M1K7)
for some positive constants Ky, Ko > 0 and

—K1 K1
—K1 K1—HKg Ko

(4.18) A(r) = —rz  k2—Rs  Rs

—HRa2n K2y
As we are mainly interested in stable N-front solutions, we assume
sign My = sign My = —1
from now on, and, by rescaling the solutions v (t), we obtain
M =—id.

The other cases can be handled similarly.
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4.3. Solving the reduced eigenvalue problem. Thus we shall solve (4.17).
By Rouché’s theorem, there exist precisely 2N +1 solutions of (4.17), since S(A) is
analytic in A and

det S(\) = A2Vt 4 0(1)

near A = 0.
One of these solutions is equal to zero,
(419) )\2N+1 = 07

due to translational invariance. By construction, the associated eigenvector is given
by v =(1,...,1); see Lemma 4.1.
Substituting A = vr and M = —id into (4.17) and dividing by r>¥*! yields

(4.20) det (A(r) + v (id +o(1))) = 0.

There are another N eigenvalues which can be computed easily. Indeed, setting r = 0
in (4.20), we obtain

N
det(A(0) + vid) = »NV*! H(CQl—l +v).
=1

Hence, again by Rouché’s theorem, there exist precisely N solutions vg;_1(r) of (4.20)
counted with multiplicity and continuous in r such that

vo1—1(0) = —c—1 < 0.
They correspond to N eigenvalues Ag;—1(r) of (4.17) given by
(4.21) A2i—1(r) = voy—1(r)r = —(eai—1 +0o(1)) r < 0, I=1,...,N.

It remains to calculate the remaining N eigenvalues of (4.20). The columns of

the matrix S(v,r) = A(r) + v (id +o(1)) are given by

Cl = (_%1+V7_Kla07"'50)+0(1)1/7
Cj = (O,...,O,I?&jl,lij1—l~<&j+V7—FLJ‘7O,...,O>+O(1)V, 7=2,...,2N,
~———
Jth
Cont1 = (0,...,0,Ron, Koy +v) +o(1)r;

see (4.18). Adding successively the jth column C; to C;j_; for j = 2N+1,...,2 yields
a matrix with columns

Ch = (v,...,v)+o(l)y,
C; = (0,...,0,Rj_1,kj_1 +v,v,...,v | +o(1)r, j=2,...,2N,
~——
jth
Cony1 = (0,...,0,Ron, kax + V) 4+ o(1)v.

Note that this transformation does not change the determinant. Moreover, recall from
(4.15) that

Koi—1 = ca—1 +o(l), Roi—1 = o(l) = o(ka-1),
Koj = (e +o0(1))r%, Fog = o(r?) = o(kx)
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for positive constants ¢; > 0 and exponents §; > 0 strictly decreasing in I; see (4.16).
For fixed k satisfying 1 < k < N, we make the ansatz

v = o

7.
Substituting it into the matrix yields

Cl = [(777777) +O(1)} rﬁkv

Cgl = I

0,...70702171,0...,0 +0(1)
——

(20)th

(07...,07 N m,...,n) +o(1)
~—

B, l <k,

(20+1)th

07"'70702k+n’n7"'7n)+O(1) Tﬁk? l:k
——

(2k+1)th

(0,...,0, ol ,O,...,O)—i—o(l)}rﬁl, 1>k
~—~
- (21+1)th

Cop1 =

for I = 1,...,N. Thus, factorizing the powers of r multiplying each column, the
determinant of the matrix S(r®n,r) equals

N
det S(rPn,r) = (det S(nm)) (k1B H P,
I=k+1
where the columns of S(n,r) are given by

Ol = [(777777)4_0(1)}’

OQl = )

0,...,0,@1_1,0...,0>+o(1)
——

(20)th

(O,...,O7 n ,17,...,77) +0o(1)
i ~~

, Il <k,

(20+1)th

Coy1 = ’ I=Fk,

07~-~70702k+77a77a---777> +0(1)
——
(2k+1)th

(0,...,0, Cag ,0,...70> +o(1)
——

(2141)th

, > k.

As we are interested in zeroes for r > 0, it suffices to solve

(4.22) det S(n,r) = 0.
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This matrix, however, is upper triangular up to terms of order o(1). Its determinant
is therefore given by

det S(n,r) = det S(n,0)+o(1)
= ¥ Hllikﬂ 1) (1 + cai) ( Hll\il ca1-1) +o(1).

Again by Rouché’s theorem, there is a unique solution 79 (r) of (4.22) satisfying

n21(0) = —co
for I =1,...,N. The corresponding solution Ag(r) of (4.17) is given by

(4.23) Aoy (1) = var(r) r = noi(r) rlth = —(cg1 +0(1)) rito

= e+ o(1) rortve

forl=1,...,N; see (4.16) for the last identity. Note that these solutions are not the
same for different values of | owing to (4.16). Moreover, they converge faster to zero
than the eigenvalues Ag;_1 obtained in (4.21).

Summarizing the facts obtained above, we have calculated 2N 41 solutions A;
of (4.17) appearing in (4.19), (4.21), and (4.23). According to the remark above,
they are pairwise distinct, from which we have found all solutions. This proves
Theorem 2.2. a

5. Application to the FitzHugh—Nagumo equation. Consider the Fitz-
Hugh—Nagumo equation

Ut = Ugz + f(u) - w,
wy = €(u—yw)

(5.1)

for x € R with f(u) = u(l — u)(u — a) and a € (0, 3) fixed. This equation is a
simplification of the Hodgkin—Huxley equation modeling the propagation of impulses
in nerve axons. Being interested in travelling waves (u,w)(z,t) = (u,w)(x + ct), we

introduce new variables (§,t) = (x + ct,t) in which (5.1) takes the form

up = uge —cug + fu) —w,

wy = —cwe +e(u—yw).

(5.2)

The existence of fronts travelling with wave speed ¢ boils down to investigating hete-
roclinic orbits of the ordinary differential equation

U = v,
(5.3) 0 = o — f(u)+w,
W= %(U - ")/’LU),

which is the steady-state equation corresponding to (5.2). Here "= d/d¢. Linearized
stability of equilibria (u,w) of (5.2) is determined by the spectrum of the linear
operator
Uge — cUe + Dy f(0)U = W
(5.4) Luwy=[ ¢ "¢ fw)
—cWe + €U — W)
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Fi1G. 7. The N-front wave solution for N = 3. The distances of the layers are given by T and

6;T = W%ai%T with Oy 11— > 0 strictly decreasing in j; see Theorem 2.1.
1

In particular, eigenvalues A with corresponding eigenfunction (U, W) of L are given
by bounded solutions of

u =V,
(5.5) V. = eV =D, f(w)U+W + U,
W = SU-W)-2W.

Deng proved in [Den91b] that there is a curve (y(e€), ¢(e)) for all € > 0 sufficiently
small such that the FitzHugh-Nagumo equation (5.3) possesses a twisted heteroclinic
loop for these values of parameters. In particular, he concluded the existence of N-
fronts for any N > 1 using his result [Den91a]. Theorem 2.1 of the present article
provides the distance of the layers; see Figure 7. Yanagida proved in [Yan89] that
the simple fronts ¢; (t) and gz () building the heteroclinic loop are linearly stable with
respect to the partial differential equation; that is, the spectrum of the linearized
operator (5.4) is contained in the left half-plane except for a simple eigenvalue at
zero. Finally, Nii [Nii95b] proved that the 1-fronts are linearly stable, too, using
topological methods—however, he had to assume that the flow of (5.3) is linear near
both equilibria. The next result asserts that in fact all N-fronts are linearly stable
and provides asymptotic expansions of the critical eigenvalues.

THEOREM 5.1. The N-fronts (and N-backs) of (5.1) proved to exist by Deng
[Den91b] are linearly stable for all N. The 2N +1 critical eigenvalues near zero are
given by Theorem 2.2. Note that linear stability implies nonlinear stability by [BJ89].

Proof. We shall use Theorem 2.2 to conclude linear stability of the N-fronts. First
note that the hypotheses (H1)—(H6) needed in that theorem are met by [Den91b].
Moreover, by the results in [AGJ90] and the stability of the simple fronts proved in
[Yan89], it is sufficient to calculate eigenvalues of the linearized operator (5.4) near
zero; see for example [Nii95b] for a discussion. Indeed, the spectrum of (5.4) does
not contain eigenvalues with nonnegative real part and large modulus; see [Eva75].
Comparing the eigenvalue problem (5.5) and the travelling wave equation (5.3) with
equations (2.1) and (2.4), we see that they are of the same form by taking B according
to

00 0
B=|10 0
00 -1

Hence it suffices to prove that the Melnikov integrals

(5.6) / T n(0), Biu () dt < 0

— 00
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Fi1G. 8. Conventions used by Deng and the present article.

are negative for k = 1,2, where 14 (t) are chosen according to hypothesis (H6); see
Figures 2 or 8. Indeed, then the statement of the theorem follows immediately from
Theorem 2.2.

In order to do so, notice that for any solution (u,v,w) of (5.3)

U 0 0
Bl v | = U = v = D.F(u,v,w,c)
w —1y —5(u—~w)

holds, where F' denotes the right-hand side of (5.3). In particular, we obtain

(5.7 | Bad= [ w0, D@ 0.0)
The second integral in the above formula is the derivative with respect to ¢ of the
signed distance of unstable and unstable manifolds measured in the direction ) (0),
that is,

> d U S
68) [ @0 DeF(anlt),0) dt = o (0nl0).pE(e) ~ P (0),
where pi(c) € W"(pk,c) and pi(c) € W*(p, c); see, for instance, [Kok88], [Lin90],
or [Den91b]. Here, and in the following, the index k is taken modulo two. The
last quantity appearing in (5.8) has been computed in [Den91b]. What is actually
computed therein is

d d s “
%Qk =T (exs Phy1(c) —pi(c)) < 0;

see [Den91b, eq. (3.1)] for the definition and [Den91b, eqgs. (5.3a), (5.4a)] for the
actual computation. Moreover, the vectors ey appearing in (5.9) above are chosen in
[Den91b, pp. 1641 and 1644] such that

(5.10) e = —¢i(0);

(5.9)
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see Figure 8. Summarizing, we obtain from (5.7) and (5.8) that the Melnikov integrals

| 0. Ba@)ae Y 20050 - ()

— 00

(2@2%@%mmm@—ﬁﬂw>

. d
(529) —Qr < 0
dc

are indeed negative. Thus the theorem is proved. ]
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MONOTONICITY OF PHASELOCKED SOLUTIONS IN CHAINS
AND ARRAYS OF NEAREST-NEIGHBOR COUPLED
OSCILLATORS*

LIWEI RENt AND G. BARD ERMENTROUT?

Abstract. The existence of phaselocked solutions in chains of weakly coupled oscillators is
proven rigorously. The solutions show interesting monotonicity which plays an important role for the
existence proofs. Under some conditions, we show that two-dimensional arrays can be decomposed
into two one-dimensional problems. With this theory of decomposition, target patterns can be
explained. Numerical results are provided to illustrate the theorems on the chain problem and to
show traveling waves in the chains and arrays.

Key words. coupled oscillators, target patterns, phaselocking, neurons
AMS subject classifications. 34C29, 34C15, 58F22, 92C20
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1. Introduction. Coupled oscillators play an increasingly important role in our
understanding of various types of repetitive activity in the nervous system. There
have been numerous analytic and numerical studies of the behavior of systems of
coupled oscillators. These range from models of cognitive processing and binding [1]
to attempts to model locomotor patterns [2]. Several connection topologies have been
explored primarily due to their mathematical tractability. The simplest topology is
a one-dimensional chain of oscillators. Mathematically, the case in which the two
ends are connected is the easiest to analyze, but in realistic applications, this rarely
arises. However, the chain topology is quite natural for models of systems such as
the lamprey swim central pattern generator [2] or the central pattern generator of the
leech [3]. The behavior of weakly coupled oscillators in a chain has been the object
of extensive work by several authors [4, 5, 6, 7, 8].

Two-dimensional arrays of oscillators have been subject to far less mathematical
analysis; most work deals exclusively with numerical simulations. They arise more
naturally than chains in attempts to understand oscillatory neural behavior in neural
tissue which is typically arranged in distinct two-dimensional sheets. Furthermore,
there are many phenomena that can occur in two- and three-dimensional systems of
oscillators that are not possible in one dimension.

It was shown in [5] that the phaselocked behavior of a sufficiently long chain of
weakly coupled oscillators can be described by the solutions of a singularly perturbed
two-point boundary value problem. The point of this reduction is that the analysis
of phaselocking and the behavior of the chain in the presence of inhomogeneities and
anisotropic coupling is much easier for the continuum model than for its discrete
analogue. In this paper, we will use another approach to investigate the phaselocked
behavior with any number of oscillators. That is, we do not require the length of the
chain to tend to infinity.

Coupled oscillators present an almost impossible problem to analyze in any gen-
erality. Thus, we will restrict our attention to a class of so-called phase models that

*Received by the editors February 14, 1996; accepted for publication (in revised form) October
17, 1996. This work was supported by NIH grant NIMH-47150 and NSF grant DMS 96-26728.
http://www.siam.org/journals/sima/29-1/29883.html
fDepartment of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 (bard@math.
pitt.edu).
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arise when oscillatory elements are weakly coupled. As was the case in [5], we will
restrict our attention in this paper to nearest-neighbor coupling. In a later paper, we
investigate coupling with greater spread. We first consider one-dimensional chains of
oscillators. Then, we turn our attention to two-dimensional arrays. Under the condi-
tion that the distribution of intrinsic frequencies is a sum of two stripe distributions:
one with constant frequencies along each row and another with constant frequencies
along each column, we are able to decompose the two-dimensional problem into a set
of one-dimensional problems and from this gain insight into the global phaselocked
behavior. The techniques for two-dimensional arrays can be generalized in an obvious
fashion to three- and higher dimensional arrays.
The equations to be considered have the form

(1.1) 9; :wi+H+(9i+1 —Gi)—f—H_(Hi_l —91’),

where i = 1,...,n + 1, both HT and H~ are smooth 2m-periodic functions of their
arguments, and w; is the frequency for each oscillator. Note that (1.1) is a nearest-
neighbor coupled system. The term H~ (respectively, HT) will be ignored for i = 1
(respectively, i = n+1). Equation (1.1) arises naturally in systems of weakly coupled
oscillators. We assume that without coupling, each component of the chain has an
asymptotically stable limit cycle. Thus, without coupling, each oscillator is described
by a single coordinate, the phase, 6;. The phase space of the n + 1 oscillators then lies
in an n + 1 torus. If the oscillators interact weakly, then this invariant torus persists,
and it follows from averaging theory that the equations for the phases of the n + 1
oscillators is exactly equation (1.1). (For details on the derivation of these equations,
see, e.g., [4].) The interaction functions H* are easily computed once the uncoupled
oscillation is known and a formula is given for the interaction between the oscillators.

We point out that if two oscillators are coupled by diffusion, then the interaction
functions H* vanish at 0. Thus, if there are no local differences in the oscillators (w;
is independent of i) then the synchronous state 6;(t) = wt is one possible solution.
However, if the coupling between oscillators is based on chemical transmission then one
does not expect that H*(0) will vanish. Because oscillators on the boundary (at the
ends in one dimension, on the edges in two dimensions, etc.) receive less synaptic input
than oscillators in the interior, this sets up a natural frequency difference between
the oscillators. This makes it possible to induce a pattern of relative phases such
as a traveling wave in one dimension and target patterns in two dimensions. In
[5] we analyzed chains of oscillators in which there is an intrinsic anisotropy in the
coupling so that H+ and H~ are not necessarily the same. This was exploited in
order to suggest a mechanism for the uniform traveling wave of electrical activity in
the lamprey spinal cord. In this paper, we are mainly concerned with couplings for
which H* are identical. In [7] the behavior of the chain is understood by letting n
get very large and converting to a continuum equation. Here we do not restrict the
size of n; the results hold for both small and large n. The main reason that we first
analyze the one-dimensional chain is that we can then use these results to analyze a
class of solutions in two and higher dimensions.

In section 2, we shall take the technique used in [9] to prove the existence of
phaselocked solutions for several general cases. The monotonicity of the phaselocked
solutions is also obtained. The monotonicity does not have any specific implication for
traveling wave, but it does play a critical role in the existence proof of the phaselocked
solutions.

In section 3, we shall investigate the two-dimensional arrays of weakly coupled
oscillators based on the existence results of section 2. As in the one-dimensional case,
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we restrict our attention to nearest-neighbor coupling, but the coupling in each of
the four directions need not be the same. Under some conditions on the frequencies
w;j, we can reduce this problem to two independent chain problems such that we can
apply the results obtained from section 2 to describe the behavior of two-dimensional
arrays of weakly coupled oscillators. One of the main results is that with isotropic
“synaptic coupling,” target patterns spontaneously form and synchrony cannot occur.
This is due to the effects of boundaries in synaptically coupled cells.

Finally, we discuss some other two-dimensional solutions as well as how small
chains can qualitatively differ from very long chains.

2. Chains of oscillators. For convenience, the equations (1.1) are written in
the form

0’1 = w1 —+ H+(02 — 01),
(2.1) (9; :wi—l—H_(Hi_l —91‘)+H+(9i+1 —Gi),
07/z+1 = Wny1 + H (0 — Onpr).

We take ¢y = 0,41 —0;,0; = wit1 —w;, i =1,...,n. Also, we define two functions
f and g related to H™ and H~ as f(¢) + g(¢) = H"(¢) and f(¢) — g(¢) = H (—9).
In (2.1), if the ith equation is subtracted from the (i + 1)th one, we have

¢1 = b1+ fd2) + 9(P2) — 29(¢1),

¢; = Bi + f(div1) — f(dim1) + 9(div1) — 29(di) + g(¢i—1),
(2.2) i=2,. . .n—1,

¢;'7, = ﬁn - f(¢n—1) - 29(¢n) + g(¢n—1)'

Two numbers ¢;, and ¢r need to be considered. They are defined as f(¢r) =

9(¢r), ie., H (=¢r) =0, and f(¢r) = —g(¢r), i.e., H (¢r) = 0.

We assume some hypotheses on f and ¢ in a sufficiently large interval J around
¢=0:

(H1) g'(¢) > |f (@) for ¢ € J;

(H2) There exists a unique solution ¢, (respectively, ¢r) to f = g (respectively,

f=—g) fordel.

These conditions are proposed in [5] with other conditions. Note that ¢ < 0 <
¢ if £(0) > [g(0) and ¢r, <0 < ¢p if £(0) < —[g(0)].

2.1. Isotropic case with 3; = 0,7 = 1,...,n. We investigate the case with
HT* =H~ and 3, =0,i =0,...,n. In this case, f is an even function and g an odd
one. And we have ¢;, = —¢r. Then (2.2) can be rewritten as

¢y = f(#2) + g(d2) —29(¢1),

¢; = f(@iv1) = f(diz1) + g(biv1) — 29(¢) + g(¢i-1),
(2.3) i=2...,n—1,

(ZS;L = _f((bnfl) - 2g(¢n) + g(¢n71)~

First of all, let’s look at the initial value problem (IVP) (2.1) with 6;(0) = ¢ where
¢ is any real number. Then by the facts that HT = H~ and w; = w (since §; = 0,
i=1,...,n), we have 0;(t) = 0, 42_;(t) fort > 0,i =1,...,n+1. Then the IVP (2.3)
with ¢;(0) = 0 shall yield ¢;(t) = —¢n4+1-:(t). That inspires us to study the system
including only half the number of equations of (2.3).
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LEMMA 2.1. Let n = 2m — 1. Assume that f and g satisfy the conditions (H1),
(H2), and f(0) > 0; then the IVP (2.3) with ¢;(0) =0,i=1,...,n, has the following
monotonicity along the trajectory:

(2.4) oL > P1(t) > Pa(t) > -+ > dm—1(t) > dm(t) =0
and
(2.5) GL(t) >0,i=1,...,m—1

for 0 <t < t, where t is such that ¢}(t) =0, i =1,...,m, ort = +oo.

Remark. The fixed point always happens at ¢ = +oo for an autonomous system.
So we should have £ = +oco here. But a finite positive # does not affect our results.
Hence we define ¢ in the above way for the convenience of proof.

Proof. As we mentioned, ¢n,(t) = —@Pni1-m(t) = —@m(t) for ¢ > 0. Then
@m(t) = 0is obvious. Since we only use half the number of equations (2.3), we restate
them as

¢ = f(d2) + 9(¢2) — 29(1),
¢; = f(ir1) — f(i-1) + 9(dir1) — 29(di) + g(i-1),
(2.6) i=2,....m—2,
Orn1 = F(0) = f(dm—2) — 29(dm—1) + g(Pm—2)-
Therefore ¢}(0) = f(0) > 0,¢5(0) = 0,i = 2,...,m — 1 (where we use the fact that

g(0) = 0 since g is odd).
Furthermore, one can show by induction that

1(0) >0,
(27) #(0) =+ =¢{ V() =0,
6 (0) =¢'(0)657(0) >0, i=2...m-1

Remark. By (H1), ¢/(0) > 0 such that ¢{” (0) = [¢/(0)]"~1¢} (0) > 0.

So there exists small 6 > 0 such that (2.4) and (2.5) hold for 0 < ¢ < ¢ if one
applies the Taylor’s expansion for ¢;(t) and ¢}(¢) around ¢ = 0. Starting with this
result, we need to show that (2.4) and (2.5) are always true for ¢ > 0.

By contradiction, suppose that there is a first place to where (2.4) and (2.5) break
down. Then we need to study the following cases.

CASE 1. ¢r = ¢1(to) > ¢2(to) > -+ > dm—1(to) > dm(to) =0 and ¢;(to) > 0,
i=1,...,m—1.

Then
0 < ¢ (to) = f(d2(to)) + g(2(to)) — 29(41(t0))
= f(¢2(to)) + g(¢2(t0)) — 29(¢r)
= f(¢a(to)) + g(d2(to)) — f(or) — 9(ér)
= [f"(&) + ¢ ()](¢2(to) — oL)
<0

where £ € (¢2(t0), ¢1) by the mean value theorem and (f" + ¢')(§) > 0 by (H1). This
leads to ¢o(to) = o1
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By induction on i, we shall gain ¢;(tg) = ¢r,i=2,...,m — 1.
Then we have

0<

f(0) = f(or) —g(oL)
f(0) +9(0) = f(or) —9(oL)
= (f"+9)(&)(0 = ¢r),

which implies ¢, < 0. This leads to contradiction since ¢y > 0. Therefore Case 1 is
impossible.

CASE 2. ¢r > ¢1(to) > --- > ¢j(to) = djg1 = -+ = dm—1(to) > dm(to) =0
for some j € {1,2,...,m — 2} and ¢i(to) >0 Vie {l,...,m—1}.

Then

¢j+2(to)) — f(#;(t0)) + 9(dj+2(to)) — 29(pj+1(t0)) + g(#;(t0))
pjra(to)) — f(Bjr1(to)) + g(djra(to)) — g(@j+1(to))
= [f"+ 1) (Pj42(to) — @jt1(to))

which implies ¢j+2(t0) = ¢j+1(t0) (SiHCG f’ + g’ > 0in J and ¢j+1(t0) > ¢j+2(t0)).
By induction, we have ¢ > ¢1(to) > -+ > ¢;(to) = ¢j41(to) =+ = dm—1(t0) >
(bm(to) =0.
Then

0 < ¢p,_1(to) = f(0) = f(@m—1(t0)) — g(dm—1(t0))
= f(0) +g(0) = f(dm-1(to)) — g(Ppm—1(t0))
= [f/ + g/](f)(o - ¢77L—1(t0))7

which implies ¢,,—1(to) < 0: a contradiction!

Therefore we eliminate the possibility of Case 2.

CASE 3. ¢L > ¢1(t0) > e > (bm—l(to) > ¢m(t0) =0 and ¢;(t0) > 0 Vi and
¢’ (to) =0 for some j € {1,...,m —1}.

First of all, if j = 1, i.e., @] (t9) = 0, then we must have ¢4(tg) = 0. Otherwise
@5 (to) > 0; then for € > 0 small enough, we have

¢ (to — €) = ¢1(to) — &7 (to)e + ()
= ¢! (to) — [f'(¢2(t0)) + ¢ (92(t0))] 05 (to)e + 29 (¢1(t0)) ¢ (to)e + o(e?)
= —[f"(¢2(t0)) + ' (¢2(t0))]¥5(to)e + 0(£)
< 0.

This is a contradiction since #g is the first place where (2.4) and (2.5) break down.

Furthermore, we can get ¢}(t9) = 0,4 = 2,...,m — 1 by using the techniques of
induction and contradiction. Taking ¢ = ¢y, we are done with the proof.

Secondly, assume that ¢}(to) > 0,4 = 1,...,j — 1, and ¢(to) = 0 for some
j € {2,...,m —1}. Then by applying the same technique above and noting that
g — f'>0in J, we will obtain ¢ ,(to) = 0, which is a contradiction. Hence we
eliminate Case 3.

Now by getting rid of Cases 1-3, we can conclude that either there exists a
t > 0 such that (2.4) and (2.5) hold for 0 < ¢ < # and @#}(f) = 0,i = 1,...,m,
or the first place ¢y where (2.4) and (2.5) break down does not exist. The proof is
completed. 1]
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Remark 1. In the proof of Lemma 2.1, the monotonicity of solution along the
trajectory plays an important role. In order to get monotonicity at the start of the
trajectory, we need the initial vector ¢;(0) = 0,7 = 1,...,n. For other initial vectors,
monotonicity fails.

Remark 2. Throughout this paper, we always start from ¢;(0) = 0. As we can
see in the following sections, if the monotonicity fails on the trajectory, we cannot
continue the proof theoretically. But numerical experiments show that the solution
trajectory of (2.2) always converges to the same equilibrium for any initial vector. It
seems that the basin of attraction is infinitely large.

LEMMA 2.2. Let n = 2m. Assume that f and g satisfy the conditions (H1),
(H2), and f(0) > 0; then the IVP (2.3) with ¢;(0) = 0,7 =1,...,n, has the following

monotonicity along the trajectory:

(2.8) or > ¢1(t) > d2(t) > -+ > Ppm-1(t) > d(t) >0
and
(2.9) Hi(t) >0, 0<t<it, i=1,...,m,

where t is such that ¢(t) =0,i=1,...,m, ort = +o0.
Proof. The proof is similar to the proof of Lemma 2.1. The difference is that we
should restate the equations of (2.3) as

o1 = f(¢2) + g(¢2) — 29(¢1),
¢; = f(pit1) = f(diz1) + g(dir1) — 29(di) + g(di-1),
(2.10) i=2.. m—1,

O = f(m) — [(dm-1) — 39(dm) + 9(dm—1).

All the techniques from Lemma 2.1 can be applied here so we ignore the details. 0

THEOREM 2.3. Assume f and g satisfy the same conditions as in Lemmas 2.1
and 2.2; then the IVP (2.3) with ¢;(0) =0, i =1,...,n has the following properties:

(i) For eachi € {1,...,n}, there exists ¢; such that lim, ; ¢;(t) = ¢;

(ii) (@1,...,0n) is the fived point of the system (2.3);

(111) Q_SL >¢l>¢2 > > Ppo1 > Gn > PR;

(iv) ¢i = —bpy1-i,i=1,...,n.

Proof. By the results of Lemmas 2.1 and 2.2, (i), (ii), and (iv) are easy to check.
Also we have ¢y, > él > (;32 > > gzgn,l > q@n > ¢r. We need to show that all the
inequalities are strict. By contradiction, suppose ¢, = ¢1. Then we have

0= f(¢2) + g(d2) — 29(¢1)
= f(¢2) + 9(d2) — 29(¢1)
= f(92) + 9(d2) — [f (1) + 9(¢1)]

which implies ¢ = ¢r.

Then we would have ¢; = ¢, i = 1,...,n by induction on i.

And 0 = —f(¢r) — 29(éL) + g(ér) = —f(ér) — g(ér) by the last equation of
(2.3) such that f(¢r) = —g(¢r) which leads to ¢, = ¢r. This contradicts ¢, = —dgr
since ¢, > 0. Hence ¢y, > ¢; must hold.
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F1G. 2.1. The isotropic case with HY(¢) = H™ (¢) = H(¢) = .5cos ¢ +sin¢, n = 11, and 3; = 0.0.

_ Suppose ¢1 = ¢o; then 0 = f(¢2) + g(¢2) — 29(¢1) by (2.3). This is 0 = f(¢d1) —
9(¢1), which implies ¢1 = ¢,. So we must have ¢, > ¢1 > ¢2. By the symmetry, we
have ¢p < ¢n < Pp_1.

Suppose i is the first index such that ¢; = ¢;1; then

0= f(iv1) — f(Dim1) + g(Piv1) — 29(¢:) + g(di—1)

= f(¢i) = f(Pi—1) — g(d:) + g(i—1)
= f(é:1) — 9(pi—1) — 9(¢:) + 9(di-1)
= (9/ - f/)(g)(éi—l - &i),

which implies ¢; 1 = ¢;, a contradiction.

Hence ¢, > ¢1 > o > -+ > dp_1 > ¢y > P O

In Figure 2.1 we illustrate the theory of Lemma 2.1 and Theorem 2.3 with a
numerical example. Here we take HV(¢) = H(¢) = 0.5cos¢ + sin¢. Then ¢ =
—¢r = arctan(0.5) = 0.464 and J = (— arctan2, arctan2) ~ (—1.107,1.107) for the
conditions (H1) and (H2). We implemented the numerical computation by using
the interactive package XPPAUT which was developed by B. Ermentrout. From
the top to the bottom, the curves are ¢1(t),...,¢11(t) (n = 11), respectively. Note
¢6(t) = 0 is on the x-axis. The figure shows the monotonicity and symmetry of
solution (¢1(t),...,d,(t)) along the trajectory.

In Lemmas 2.1 and 2.2 and Theorem 2.3, we have the condition f(0) > 0. For
f(0) < 0, the results and the proofs are very similar. We just state Theorem 2.4
without proof.

THEOREM 2.4. Assume [ and g satisfy (H1), (H2), and f(0) < 0; then the IVP
(2.3) with ¢;(0) =0, i=1,...,n has the following properties:

(i) For eachi € {1,...,n}, there exists ¢; such that lim, ; ¢;(t) = ¢i;

(ii) (¢1,...,¢n) is the fized point of the system (2.3);

(iil) ¢r < ¢1 < P2 <+ < Pn-1 < I < Pr;

(V) 61 = —Gn1iri=1,....n.

We turn our attention back to the system (2.1). Notice that we have

—

w+HY (1) =w+H (—¢is1) + H (i) =w+H (=pp),i=2,...,n— 1.
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We take Q = w + H™(—¢;—1) + H*(¢;); then 0 = Qt, 0; = Qt + Y, ¢, i =

2,...,n+1, is the phaselocked solution of (2.1). Before showing that this phaselocked

solution is stable, we state a general stability result due to Ermentrout [10].
THEOREM 2.5 (Ermentrout, 1992). Consider the equations

(2.11) dOy/dt = Hi(01 — O,...,00 —6k), k=1,...,M.
Let 0), = Qt + ¢y, be a phaselocked solution and let
(2.12) ajkzaHk(zl,...,zM)/ézj

evaluated at z; = 1; — y.. Suppose that aj, > 0 and the graph of the matriz (aji)
is complete. Then the phaselocked solution is orbitally asymptotically stable in the
sense that there is a simple zero eigenvalue corresponding to translation in time and
all other eigenvalues have negative real parts.

Due to (H1), we have ¢’ £ f' > 0 in J. Then the phaselocked solution #; = Qt,
0; = Qt—«—Z;;ﬁ Ok, i =2,...,n+1, satisfies the nonnegativity assumption in Theorem
2.5. The graph of (a;x) is complete since a; ;41 > 0 and a;41,; > 0fori =1,...,n.
So we have shown that the phaselocked solution is asymptotically stable. This result
is summarized in the following theorem.

- THEOREM 2.6. Under the conditions of Theorem 2.3 or 2.4, 01 = Qt, §; = Qt +
Z;;ll br, i =2,...,n+1, is the phaselocked solution of (2.1), orbitally asymptotically
stable in the sense that there is a simple zero eigenvalue corresponding to translation
i time and other eigenvalues have negative real parts.

As a matter of fact, in Theorem 2.6, all the n nonzero eigenvalues with nega-
tive real parts are actually the eigenvalues of the system (2.3) linearized around the
equilibrium (o1, ..., ¢n).

COROLLARY 2.7. Under the conditions of Theorems 2.3 or 2.4, (¢1,...,¢n) is an
asymptotically stable steady state of (2.3) and all the eigenvalues of the system (2.3)
linearized around it have negative real parts.

2.2. Isotropic case with 8; = 3 # 0,7 = 1,...,n. Throughout this section,
without loss of generality, we assume 3 < 0. If 8 > 0, you can subtract the consecutive
equations of (2.1) in another direction such that the frequency difference is less than
zero. In this case, we still have HT = H~, which implies that f is even and g odd
such that ¢ = —¢pr. We restate (2.2) in the form

b1 = B+ f(¢2) + g(d2) — 29(1),
¢; = B+ f(div1) = F(dic1) + g(dir1) — 29(i) + g(di—1),
(2.13) i=2...n—1,

¢ =B — f(Pn-1) = 29(¢n) + 9(¢n—1).

For # = 0, we have that (¢, ..., ¢,) is the asymptotically stable steady state of (2.13)
following Corollary 2.7. Then if | 3| is small enough, we should get an asymptotically
stable steady state ¢;(3), i = 1,...,n near (é1,...,¢,) by the implicit function
theorem. We denote the trajectory by ¢;(t,3), i = 1,...,n for the IVP (2.13) with
¢:(0) = 0. By continuity, ¢;(t,3) should have the monotonicity and boundedness as
in Lemmas 2.1 and 2.2, and ¢;(t, 8) — ¢:(8) as t — +oo if | 3| is small enough. We
summarize this fact in Theorem 2.8

THEOREM 2.8. Assume that f and g satisfy (H1) and (H2). Let |5| be small
enough; then the IVP (2.13) with ¢;(0) = 0 satisfies that
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(1) if f(0) >0, then

(ii) #f f(0) <0, then
(2.15) L < $1(t, B) < -+ < Pu(t, B) < Pr-

Also ¢;(t,8) — ¢;(B) ast — +oo fori = 1,...,n, where (¢1(B),...,0n(B)) is the
asymptotically stable steady state of (2.13) near (¢1,...,¢n).

Theorem 2.8 is not a particularly strong result. To keep the monotonicity and
boundedness, |3 has to be assumed very small. We would like to know when the
monotonicity breaks down. This leads to the following theorem.

THEOREM 2.9. Assume that f and g satisfy (H1), (H2), and f(0) > 0. Let |3| be
small enough that ¢p,_1(t) > ¢gr, t > 0 for the IVP (2.13) with ¢;(0) =0,i=1,...,n.
Then we have the following properties along the trajectory:

(i) there is a sequence {tx}3>, (it could be a finite sequence) such that 0 =t; <
ty < - <t <---<t, and for each k, there is Iy € {1,...,n} so that

¢2(t)>07 7::]-7"'71167 tk<t<tk+17

(2.16) Gt) <0, j=l+1,..m, tp<t<ti,
(2.17) lk41 € {O,Zk— 1,lk,lk—|—1,n},
(2.18) either ¢; (ter1) =0 or ¢, 1 (tke1) = 0 (not both),
(2.19) oL > d1(t) > > Pno1(t) > dn(l) > ¢g, e <t < tpr

where t is such that ¢i(t) = 0,3 = 1,...,n ort = +o0, and ¢5 € J is such that

f(¢8) +9(¢p) = B (note that pg < dr).
(ii) for each i € {1,...,n}, there exists ¢; such that

(2.20) lim ¢; (t) = ¢4,
t—t
(2.21) oL > ¢1 > > P > ¢,

and (¢1,...,¢n) is a fized point of (2.13).

Remark. The condition ¢,_1(t) > ¢r,t > 0 means that ¢,_; cannot cross ¢r
along the trajectory. It is weaker than the condition in Theorem 2.8 since it allows ¢y,
to cross ¢r. It holds when |3] is small enough (but not as small as in Theorem 2.8)
according to the results of section 2.1.

The proof of the theorem is very long. We put it in the Appendix for interested
readers.

Figure 2.2 is a numerical solution illustrating Theorem 2.9. Here HT(¢) =
H=(¢) = 0.5co8¢ + sing and § = —0.005. The figure shows monotonicity of so-
lution along the trajectory.

For the case f(0) < 0, we have results parallel to Theorem 2.9.

THEOREM 2.10. Assume that f and g satisfy (H1), (H2), and f(0) < 0. Let |3]| be
small enough that ¢2(t) > ¢, t > 0 for the IVP (2.13) with ¢;(0) =0,i=1,...,n.
Then we have the following properties along the trajectory:

(i) there is a sequence {ti}3>, (it could be a finite sequence) such that 0 = t, <
ty < - <t <--- <t and for each k, there is I, € {1,...,n} so that

¢2(t)<07 /é:lw"alkﬁ tk<t<tk+17
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FIG. 2.2. The isotropic case with HT(¢) = H™(¢) = H(¢) = .5cos¢ +sinp, n = 11, and
Bi = B = —0.005.

( ) ¢;(t)>0, j=lk+1,...0n, tp <t<tgg,
(2.23) lp+1 € {07 I — 1, 1, U + LTL},
(2.24) either ¢, (ti+1) =0 or ¢}, 11 (ty+1) =0 (not both),
(2.25)

b < P1(t) <+ < Pp1(t) < dn(t) < Pr, tp <t <tpya,

where t is such that ¢.(t) = 0, i = 1,...,n or t = 400, and ¢g € J is such that

—f(98) + 9(dp) = B (note that ¢3 < ¢r).
(ii) for each i € {1,...,n}, there exists ¢; such that

(2.26) lim ¢;(t) = ¢;,
t—t
(2.27) $p <1< < bn < Pp,

and (¢1,...,6n) is a fized point of (2.13).

As we did in section 2.1, if we let 6, (¢) = Qt, 0;(t) = Qt—|—zz_:11 br,i=1,...,n+
1, where (¢1,...,¢,) is the fixed point of (2.13) which we obtained in Theorems
2.9 and 2.10, then Theorem 2.5 assures us that (01(t),...,0,+1(t)) is an orbitally
asymptotically stable phaselocked solution of (2.1).

2.3. Nonisotropic case with 3; = 0,7 = 1,...,n. In this case, we have
H™* # H~ which implies that f is not even and ¢ is not odd anymore. So ¢ # —¢r
in general. And we would like to restate (2.2) in the form

¢1 = f(d2) + 9(d2) — 29(¢1),
¢ = f(dir1) — f(dim1) + 9(it1) — 29(d:) + g(i—1),
(2.28) i=2,...,n—1,
¢;z = —f(¢n-1) —29(¢n) + 9(Pn-1)-
THEOREM 2.11. Assume that f and g satisfy (H1), (H2), and f(0) > |g(0)].

Then the IVP (2.28) with ¢;(0) = 0, ¢ = 1,...,n has the following properties along
the trajectory:
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(1) There is a sequence {ty}32, (it could be a finite sequence) such that 0 =t; <
to < --- <ty <---<t and for each k, there is I € {1,...,n} so that

Gi(t) >0, i=1,... g, tp <t<tlpq,
( ) (b;»(t)<0, j=lk+1,....n, tp <t <ty
(2.30) Iy €40,k — 1,1, lx + 1,0},
(2.31) either ¢, (t+1) =0 or ¢}, 1 (tx41) = 0 (not both),
(2.32) oL > ¢1(t) > - > Pn_1(t) > dult) > Pr, e <t < tpya,

where t is such that ¢i(t) =0,i=1,...,n, 07‘_f = 4o0.
(ii) For eachi € {1,...,n}, there exists ¢; such that

(2.33) lim ¢;(t) = ¢4,
t—t
(2.34) GL>¢1> > bn > g,

and (¢1,...,¢n) is a fized point of (2.28).
Proof. Note that f(0) > |g(0)|; then

(2.35) $L0)=0, i=2,....,n—1,
¢,,(0) = —f(0) — g(0) < 0.

Then by (2.28) and (2.35), we have

¢5(0) = [¢'(0) — F'(0)][£(0) — g(0)] >0,

(2.36) ¢n-1(0) = [g'(0) + f(0)][-£(0) — g(0)] < 0.
By induction on i, we can get that fori =3,...,m —1
(2.37) oM0)=0, k=1,...,i-1,

6t"(0) = [¢'(0) — £'(0))"1[£(0) — g(0)] > O,
oM. (0)=0, k=1,...,i—1,

6 111(0) = [g'(0) — F/(0)) [~ £(0) + g(0)] < O
whenever n = 2m — 1 or 2m — 2. And when n = 2m — 1, we have extra terms

(2.38) oM0)=0, k=1,...,m.

Assume ¢>£,T+1)(0) = 0 (otherwise we can figure out D (0) # 0 and ¢>$,’§)(0) =
0k=1,...,M—1).

Without loss of generality, we assume ¢™*1(0) > 0 when n = 2m — 1.

Then we have t; = 0,l; = m — 1 when n = 2m — 2, and t; = 0,l; = m
when n = 2m — 1. And the rest of the proof just mimics all the steps of proving
Theorem 2.9 0

Again in Figure 2.3 we show the results of Theorem 2.11. Here H" (¢) = H(¢)
and H™ (¢) = 0.2H(¢) where H(¢) = 0.5cos ¢ + sin¢. And ¢ = —¢r = arctan(0.5)
and J = (— arctan 2, arctan 2). The monotonicity of the solution along the trajectory
can be seen from the figure. Also we see that the solution converges to a fixed point.
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FIG. 2.3. The nonisotropic case with HY (¢) = H(¢), H (¢) = 0.2H(¢), H(¢) = .5 cos ¢+sin ¢,
n =11, and B; = 6 =0.

THEOREM 2.12. Assume that f and g satisfy (H1), (H2), and f(0) < —|g(0)].
Then the IVP (2.28) with ¢;(0) = 0, i = 1,...,n has the following properties along
the trajectory:

(i) there is a sequence {tx}72, (it could be a finite sequence) such that 0 =t <
to < --- <ty <--- <t and for each k, there is Iy € {1,...,n} so that

¢;(t)<0a izlw"alk; tk<t<tk+17
( ) ¢;(t)>0, j=lk+1,. .00, tp <t <tgg,
(240) lk+1 S {07 lk - 17 lk?7 lk + 17”}7
(2.41) either ¢, (tr+1) =0 or ¢}, 1 (tk+1) = 0 (not both),
(242) oL < ¢1(t) <+ < Pno1(t) < ult) < Or,te <t <t
where t is such that ¢4(t) =0,i=1,...,n 0[5 = +o0.

(ii) for each i € {1,...,n}, there exists ¢; such that
(2.43) lim ¢;(t) = ¢,
t—t

(2.44) ¢L <1 <+ < ¢ < PR,
and (@1, ...,6y) is a fived point of (2.28).

2.4. Nonisotropic case with 3; = 8 # 0,7 = 1,...,n. Throughout this
section, without loss of generality, we assume G < 0. If 8 > 0, you can subtract the
consecutive equations of (2.1) in another direction such that the frequency difference
is less than zero. In this case, like in section 2.2, we have H' # H~ which implies f
is not even and g not odd such that ¢, # —¢r. And we would like to restate (2.2) in
the form

¢1 = B+ f(2) + g(d2) — 29(1),

¢; = B+ f(Piv1) = f(Piz1) + g(dir1) — 29(¢i) + g(di-1),
(2.45) =2 n—1,

(b;y, = 5 - f(qbnfl) - 2g(¢n) + g((bnfl)‘



220 LIWEI REN AND G. BARD ERMENTROUT

THEOREM 2.13. Assume that f and g satisfy (H1), (H2), and f(0) > |g(0)|. Let
|B] be small enough that ¢n_1(t) > ¢r, t > 0 for the IVP (2.45) with ¢;(0) = 0,
i=1,...,n. Then we have the following properties along the trajectory:

(i) there is a sequence {ti}3>, (it could be a finite sequence) such that 0 = t, <
ty < - <t <--- <t and for each k, there is I, € {1,...,n} so that

GLt) >0, i=1,... 0k, tp<t<tps,

(246) ¢;(f)<07 J=l+1,....n, tp <t <tpy,
(247) lk+l € {O; lk - ]-a lk; lk + ]-a/n’}a
(2.48) either ¢}, (te+1) =0 or ¢, 1 (tkg1) = 0 (not both),
(2.49) oL > 1 (t) > > ¢n71<t) > ¢n(t) > ¢p,  tr <t <tpga,

where t is such that ¢i(t) = 0, i = 1,...,n or t = 4oco, and ¢3 € J is such that

f(¢p) +9(dp) = B (note that 3 < dr).
(ii) for each i € {1,...,n}, there exists ¢; such that

(2.50) lim ¢;(t) = ¢,

t—t

(2.51) GL > ¢1> > Py > dp,

and (¢1,...,¢n) is a fized point of (2.13).

Figures 2.4(a) and 2.4(b) are numerical illustrations of Theorem 2.13. Here
HY(¢) = H(¢) and H (¢) = 0.2H(¢), where H(¢) = 0.5cos¢ + sing. And
¢ = —¢r = arctan(0.5) and J = (—arctan 2, arctan2). Note that in Fig. 2.4(b),
dn—1(t) crosses ¢r somewhere so that the monotonicity is destroyed. However, the
trajectory still converges to a fixed point. Hence the monotonicity is not necessary
for the convergence of the solution. In Fig. 2.4(a) the monotonicity is preserved since
the |8] is so small that ¢,,_1(t) does not cross ¢g.

THEOREM 2.14. Assume that f and g satisfy (H1), (H2), and f(0) < —|g(0)
Let || be small enough that ¢o(t) > ¢r, t > 0 for the IVP (2.45) with ¢;(0) =
i=1,...,n. Then we have the following properties along the trajectory:

(i) there is a sequence {ti}32, (it could be a finite sequence) such that 0 = t, <
ty < - <t <--- <t and for each k, there is I, € {1,...,n} so that

)

GLt) <0, i=1,... 0k, tp<t<tpi1,

(2.52) oi(t) >0, j=l+1,...,n, tp<t<tpy,
(253) lk+1 € {07 lk - 17 lkz lk + 13 TL},
(2.54) either ¢) (te41) =0 or ¢, 1 (tk1) = 0 (not both),
(255) (bﬁ < ¢1(t) << ¢n,1(t) < (bn(t) < ¢R7 tr <t < tht1,

where t is such that (bé(f) =0,i=1,...,n ort = +oo, and ¢s € J is such that

—f(¢p) +9(¢p) = B (note that 3 < ¢).
(ii) for each i € {1,...,n}, there exists ¢; such that

(2.56) lim ¢;(t) = ¢,
t—t
(2.57) s < b1 < < Pn < Or,

and (¢1,...,¢n) is a fized point of (2.45). B
By Theorem 2.5, the fixed points (¢1,...,¢,) from the two theorems above are
asymptotically stable steady state of (2.45).
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FIG. 2.4. The nonisotropic case with HY (¢) = H(¢), H™ (¢) = 0.2H(¢), H(¢) = .5 cos ¢ +sin ¢,
n =11, (a) 3; = B = —0.0005, (b) B; = 8 = —0.005.

3. Arrays of oscillators. In this section, we consider a two-dimensional array
of coupled oscillators. The equations to be considered have the form

0 = wij + H X (01,5 — 0i3) + H ¥ (0i-1,5 — 035)
+HY (05100 — 05) + H™Y (05,51 — 05y),
(3.1) ij=1,...,n+1,
where HtX, HtY H~X and H~Y are smooth 27-periodic functions of the arguments
and w;; is the frequency for each oscillator.

Note that in (3.1), each oscillator is coupled with its four nearest neighbors. The
term H~X (respectively, HtX or H=Y or H™Y) is ignored for i = 1 (respectively,
i=n+lorj=1orj=n+1). We take

¢ij:9i+1,j_9ij7 7;:17"'7’”7 j:17"‘7n+1a
wij:9i7j+170ij7 t=1,...,n+1, j=1,...,n,



222 LIWEI REN AND G. BARD ERMENTROUT

A = Wit1,j — Wij, i=1,...,n, j:l,...,n—l—l,
ﬁij:wihﬁl—wij, t=1,....n+1, j=1,...,n

and define the functions f, g, p, and q as

F() +9(¢) = H(9),

f(9) = g(¢) = H X (—¢),
p() + q(vp) = HY (),
(3.2) p(¥) —q(yp) = HY (—1)).

Then in (3.1), if we subtract the (i, j)th equation from the (i + 1,7)th one and the
(i,4 + 1)th one, respectively, we have

Oy = aij + [(Bit1,5) = f(Di-1,5) + 9(bit1,5) — 29(dij) + g(di-1,5)
+ p(WYiv1,5) + P(Wiv1,-1) — p(¥ij) — p(¥ij-1)
+q(Wit1,5) — a(Witr,5-1) — a(¥iz) + a(ij-1),
1=1,...,n,7=1,...,n+1,

(3.3)

Vij = Bij +p(Wi 1) — p(ij—1) + a(Wij41) — 2q(iz) + q(ij-1)
+ f(Pij+1) + [(dim1j41) — [(dis) — f(di-1,5)
+9(¢ij+1) — 9(Pi-1,5+1) — 9(bij) + g(Pi-1,5)
i=1,....n+1,5=1,...,n.

Note that the index (4, 7) for ¢;; should satisfy 1 < i <nmand 1< j <n-+1 and
the index (3, 7) for 1;; should satisfy 1 <¢ <n+1,1 < j < n. Hence if (¢,7) is out
of range for ¢;; or 1;;, the corresponding terms on the right-hand sides of (3.3) are
ignored.
Again we define several constants related to f, g, p, and q. We define
* ¢r as f(¢L) = g<¢L)’ Le., H_X<_¢L) =0;
o ¢r as f(pr) = —g(¢r), i.e., HTX(pr) = 0;
o ¢r as p(¢r) = q(¢r), e, HY (=) = 0;
o Yr as p(Yr) = —q(Yr), e, HTY (Yr) = 0.
We assume some hypotheses on f, g, p, and ¢ in sufficiently large intervals Jx and
Jy around ¢ = 0 and ¢ = 0, respectively:
(HX1) ¢/(8) > |/ (@)] for & € Jx;
(HX2) there exists a unique ¢p, (respectively, ¢pr) to f = g (respectively, f = —g)
for ¢ € Jx;
(HY1) () > [/ (0)] for € Jy;
(HY2) there exists a unique 1y, (respectively, 1¥g) to p = q (respectively, p = —q)
fory e Jy.
Note that (HX1), (HX2), (HY1), and (HY2) are the assumptions extended from
the chain model.
Our goal is to apply the results obtained from the chain model to this array model.
In order to achieve this task, let us first consider a very special system of equations:

(ﬁ;J:F”(‘I))—i-GU(\I/), i:l,...,n, j:l,...,n—l—l,

3.4 , .
( ) ’LMJ:PU(\IJ)—FQ”((I)>7 221,...,7’L+1, jzl,...7’l’L,
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where
® = (dij)nx(n+1) = [P1;- -+, Pry1]
with
P15
o= |, j=1,...,n+1
Pnj
and
Uy
U = (Vi) (nt1)xn = :
i1
with

\Ili:[’(/)ilv"'7win]7 Z:l”n_i'_l

and Fjj, Pi;, Gy;, and @5 satisfy the following assumptions:

(i) if @1 =Py == Ppyq (i.e., ¢i; is independent of the index j), then
(3.6) Qi;(®)=0,i=1,....,n+1, j=1,.. n;

(i) if U =Uy="---=",yq (i.e., 1y  is independent of the index i), then
(37) Plj(\I/) :ng(\lf) == n+1,j(\I/), j: 1,...,7’L,
(3.8) Gij(U)=0, i=1,....n, j=1,...,n+1

Remark. The special form of (3.4) is a generalization of the system (3.3). We
will see this later. The conditions on Fjj, G;j;, Pij, and Q;; reflect a homogeneity
requirement for the two-dimensional domain. That is, the phase lags between left
and right neighbors are the same for each row. Similarly, the lags between top and
bottom neighbors are the same for each column.

LEMMA 3.1. The set S = {(®,U)[®1 =Dy = =Py and ¥, =Ty = ... =
U1} is an invariant set for the system (3.4).

Proof. We only need to show that if (®(0), ¥(0)) € S, then ®}(0) =--- = ®; ,,(0)
and ¥ (0) =--- =V, ,(0), i.e.,
(3.9) ¢71(0) = ¢jp(0) =+ =, 11(0) for i=1...,m,
(3.10) P50) = 9hy(0) = - = ¢y, (0) for j=1,....n

By (3.4), (3.5), and (3.8), we have that for each i € {1,...,n},

¢3;(0) = Fij(®(0)) + Gy (¥(0))
= Fi(2(0)) + Gix(¥(0))
A)

Hence (3.9) is proven. Also, we can prove (3.10) in the same way. 0
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LEMMA 3.2. In the system (3.3), if we assume
(311) Olij = Oy and ﬁij = ﬁj

then (3.3) is a system of the type (3.4).
Proof. (3.3) is a special case of (3.4) where

Fij(®) = ag + f(Pir1,5) — f(Pi—1,5) + 9(dit1,5) — 29(dij) + 9(Pi-1,5),
Gij (V) = p(Yit1,5) +p(WYit1,-1) — (¥ij) — p(ij-1)
+q(Wiv1,5) — a(ir1,5-1) — a(Wiz) + a(Yij—1),
Py (V) = Bij + p(vij41) — p(Wij—1) + a(Wij1) — 2q(vij) + a(¥i5-1),
Qij(®) = f(dij+1) + f(biz1,j+1) — f(dij) — f(Pi-1,5)
+ 9(¢ij+1) — 9(Pi—1,j+1) — 9(bij) + 9(di-1,5)-
Since we have (3.11), a; is independent of j and 3;; is independent of ¢. Then if ¢;;
is independent of j and 1);; is independent of ¢, (3.5)—(3.8) are satisfied. The proof is
completed. 0
Remark. (3.11) means that the distribution of intrinsic frequencies is a sum of two
stripe distributions: one with constant frequencies along each row, and another with

constant frequencies along each column. Hence w;; is in the form of w;; = wiX + ij.
LEMMA 3.3. If the system (3.3) satisfies (3.11), then the IVP (3.3) with

(3.12) $:i;(0)=0, i=1,....,n, j=1,...,n+1,
(3.13) i (0)=0, i=1,...,n+1, j=1,....n

has the following identity property:

(3.14) Gi1(t) = pio(t) =+ = dins1(t), i=1,...,n,
(3.15) i) = o) = - = Yupa (1), j=1,....n
fort>0.

Proof. This is an immediate result of Lemmas 3.1 and 3.2. O

Hence the IVP (3.3), (3.12), and (3.13) satistying (3.11) is reduced to two inde-
pendent systems of chain model, i.e.,

b1 = a1+ f(¢2) + g(d2) — 29(41),

¢; = i + f(dix1) = f(Bi-1) + g(div1) — 29(¢i) + 9(Pi-1),
(3.16) =2 -1,

d’;z =y — f(Pn-1) —29(dn) + 9(dn-1)

and

Py = B1 4+ p(2) + () — 2q(1h1),

Vi = B+ p(¥js1) — p(j-1) + a(¥j41) — 2a(¥5) + a(¥j-1),
(3.17) 71=2,....,n—1,

'(/);L = Bn _p(wn—l) - 21}(1/%) + Q(¢n—1)7
where (bz = (z)il — = ¢i,n+1 and wj = ’(/Jlj — = ¢n+1,j'

Note that both (3.16) and (3.17) are exactly in the form of (2.2).
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THEOREM 3.4. If the trajectories of the IVP (3.16) with ¢;(0) = 0 and the IVP
with (3.17) with v;(0) = 0 converge to the fived point (¢1,...,¢n) of (3.16) and the
fized point (1, ..., y,) of (3.17) respectively, then the trajectory of the IVP (3.3) with
(3.12) and (3.13) goes to ((¢ij)nx(n+1)> (Vi) (nt1)xn) which is the fized point of (3.3),
where

Q_Sij:éi, i=1,....,.n, j=1,...,n+1
and
@ijZ?Zj, t=1,...,n4+1, j5=1,...,n.

Also, Q = wi; + HM X (¢yy) + H X (=i ;) + HY (ij) + H Y (—thij1) (i,j =
1,...,n+ 1) is the locked frequency of (3.1).

Proof. This is a straightforward result of Lemma 3.3. 0

Now if we let 0y 1(t) = Qt, 0;;(t) = QU + S0 ¢ + Soi_ Uk, {0:(1)} is the
phaselocked solution of (3.1). And it is orbitally asymptotically stable by Theorem 2.5.

Therefore, all the results which we obtained in section 2 can be extended to this
system.

Remark 3. If the condition (3.11) is not satisfied, we will not achieve the reduction.
But if wi; = w;* +w) + o(e) for small e, we still get a stable phaselocked solution by
the implicit function theorem.

Remark 4. The reduction technique could be applied to three-dimensional arrays
of oscillators as long as w;jj, is in the form of w;j, = wiX + w}/ + wf. And the array
models could be reduced to three independent chain models.

The following are some numerical results for the two-dimensional arrays of oscil-
lators (3.1) and the reduced chains (3.16) and (3.17). For all cases, w;; = w;* +w}-/ is
assumed. A basic function H(¢) = 0.5 cos ¢ + sin ¢ is assumed.

Ezample 1. Let H™X = H* = H™Y = H™Y = H and w;; = w > 0. Then
(HX1), (HX2), (HY1), and (HY2) are satisfied with Jx = Jy = (— arctan 2, arctan 2)
and ¢;, = —¢r =y, = —¢pg = arctan(0.5). Also, f = pand g = ¢. Since w;; = w, the
condition (3.11) holds so that the array system (3.3) can be reduced to the two chain
systems (3.16) and (3.17) by Lemma 3.3. And (3.16) and (3.17) have asymptotically
stable equilibria following the results in section 2.1. Then (3.3) has an asymptotically
stable equilibrium. Noting that f = p, g = ¢, and a; = 8; = 0, the solutions of (3.16)
and (3.17) are the identical. So we only study the solution ¢; of (3.16). Figure 3.1(a)
is the plot for ¢; where (i/(n + 1), #;) are the coordinates. We can see that there is a
wave traveling outward in both directions from the midpoint of the chain [5, 11]. The
wave speed is almost constant except near the middle. By Theorem 3.4, (;_Sij = ¢; and
zﬁij = 1/;j. Then for the array, we have a wave traveling outward from the midpoint
of the array. Figure 3.1b shows this observation by plotting the relative phases. As
we mentioned in the introduction, with isotropic “synaptic coupling” target patterns
are the generic phaselocked behavior. (See the remarks at the end of this section for
a discussion about other stable patterns.)

Ezample 2. Let H™X = H™Y =15H, HX = H™Y = 0.5H, and w;; =w > 0.
Then (HX1), (HX2), (HY1), and (HY?2) hold with Jx = Jy = (— arctan 2, arctan 2)
and ¢, = —¢r = Y = —g = arctan(0.5). Also, f = p and g = ¢q. The reduction
from an array to two chains is then obtained. These two chains are identical according
to our choice of coupling functions. Figure 3.2 shows the results for the reduced chains
and the array. There is a wave traveling from the left of chain to the right. Thus there
is a wave traveling from the southwest corner to the northeast corner of the array.
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Fi1Gc. 3.1. n+ 1 =40. (a) Phase lags of the reduced chains. There is a wave traveling outward
in both directions from the midpoint of the chain. The wave speed is almost constant except near
the middle. (b) Relative phases of the array. There is a wave traveling outward from the midpoint
of the array.

Ezxample 3. The coupling functions are the same as in Example 2. We choose
wij =2w+0.1[1—14i/(n+1)] +0.1[1 — j/(n + 1)] which is in the form w;; = w;¥ —I—w}/,
where w;¥ = w+ 0.1[1 —i/(n 4 1)] and wf = w4 0.1[1 — j/(n + 1)]. Then the
solutions of the two chain systems (3.16) and (3.17) are the same. Figure 3.3 shows
the numerical solutions for the reduced chains and the array.

Ezxample 4. In this example, we show how the size of the chain can apparently
affect the qualitative features of the phases in one- and two-dimensional arrays. In
Fig. 3.4(a), we show the results of a simulation with a 50 x 50 array of oscillators
with no frequency gradient and all of the interactions functions identical and given
by H(¢) = sin¢ + 0.05cos ¢ + 0.8. The phases give the appearance of a circularly
symmetric target pattern, quite different from the rectangular-looking patterns of
Figure 3.1. This effect can be understood by looking at the behavior of the chain.
In Figure 3.4b, the phase-shifts between successive oscillators are shown for a chain
with n = 50 and n = 500 oscillators. In the case of n = 50 the phase-difference
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Fic. 3.2. n+ 1 = 40. (a) Phase lags of the reduced chains. There is a wave traveling from
the left of chain to the right. (b) Relative phases of the array. There is a wave traveling from the
southwest corner to the northeast corner.

is nearly a straight line so that the relative phases (which are the “integral” of the
phase differences) are quadratic. Since the results of this section show that the array
behaves like two orthogonal chains, it is now clear why the relative phases in the
square array have apparently circular contours; the relative phase along any axes of
the array are nearly quadratic. This is actually an artifact of the chain size. For, as n
increases, Figure 3.4(b) shows that the phase differences become piecewise constant
and so the relative phases will be linear and, in the array, will look like Figure 3.1.
This is also what is predicted by the continuum theory in [5]. However, due to the
small size of the cosine coefficient, n must be very large before there is qualitative
similarity to the continuum approximation.

3.1. Some remarks on the stability of the patterns. In one-dimensional
chains with “synaptic coupling” the traveling wave solutions described in section 2
appear to be the only stable solutions. That is, no matter what the initial conditions,
solutions converge to the monotone solutions described in section 2. On the other
hand, if the one-dimensional chain has a ring geometry so that the two ends are
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F1G. 3.3. n+ 1 =40. (a) Phase lags of the reduced chains. (b) Relative phases of the array.
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identified, then, there are several stable solutions that correspond to synchrony and
traveling waves. Thus, the domain of attraction of any given solution varies and does
not constitute the entire phase space. In particular, the larger the chain, the more
different types of stable solutions are possible.

In two-dimensional systems, everything gets worse; there are many stable phase-
locked patterns possible and a characterization of all of them remains a topic of current
research. Finding domains of stability is even harder. Consider an N x N array where
the coupling functions H*X, H*Y are of the form

H(¢) = Acosd +sin .

When A\ = 0 one stable phaselocked solution is synchrony. As A increases away from
0, the resulting phaselocked solution perturbs to the target-like patterns that we have
discussed here. For A = 0 Paullet and Ermentrout [9] have proven that there are also
stable solutions analogous to spiral waves. Since these are stable, they persist for small
A and thus represent another phaselocked solution distinct from the target patterns
described in this paper. Random initial data (rather than initial data identically 0)
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F1a. 3.4. Relative phases in an array with almost circular symmetry and their analogue in a
chain. (a) Relative phase for a 50 X 50 array. (b) A chain of length 50 and 500 showing how the
almost quadratic behavior of the phase shifts for n = 50 becomes the piecewise linear phases for
n = 500 as is predicted by the continuum equations.

converge on phaselocked solutions, but sometimes they are not targets but rather are
related to the spiral patterns. For small arrays, random initial data converge mainly
to the target patterns but on larger arrays (e.g., 40 x 40) the tendency is to converge
to series of broken spiral-like patterns. Thus, target patterns are “homotopes” of
synchrony and have essentially the same global stability behavior. They are not
unique phaselocked patterns, unlike their analogue in one dimension.

Appendix. Proof of Theorem 2.9.
(i) We prove it by applying induction on k € N. Let k = 1. Note that |3| is
small; we have f(0) + 8 > 0. Then

$1(0) = f(0) + 3> 0,
(A1) P0)=8<0, i=2...,n—1,
¢, (0) = —f(0) + 8 <0.



230 LIWEI REN AND G. BARD ERMENTROUT

Then by (2.13) and (A.1), we have
¢5(0) = ¢'(0)£(0),

(A.2) ¢n—1(0) = —g'(0)£(0).
By induction on i, we can get that fori =3,...,m —1
#i(0) = B,0M(0) =0, k=2,...,i—1,
¢E“<o g1~ 7(0) >0,
Gr—iy1(0) = 0, ¢n 1+1(0): , k=201,
(A.3) 01L111(0) = ~[g/ (O £(0) <0,
where n =2m — 1 or n = 2m — 2 and
(A-4) 9 (0) = B¢, (0) = -+ = 617 (0) = 0,

where n = 2m — 1.
Hence by (A.1)—(A.4) and the fact that ¢;(0) =0,i =1,...,n, one can apply the
Taylor’s formula to ¢;(t) and ¢;(t). Then we have

(A.5) @1 (t) > 0,85(t) <0, i=2,...,n
and
(A.6) oL > P1(t) > - > Pp(t) > ¢

in (0,6) for 6 > 0 small enough. Therefore ¢t; =0 and I; = 1.
CLAIM 1. From t =0, as long as (A.5) holds, we always have (A.6).
Suppose that there is some first place t* such that ¢ = ¢1(t*) > ¢2(t*) > --- >
&n(t*) > ¢g. Then
P (") = B+ f($2(t")) + 9(d2(t")) — 29(¢L),
=B+ f(¢2(t7)) + g(2(t7)) — f(¢ ) —9(oL),
=B+ () + g (ON2(t”) — b1),
<p.
This is a contradiction since ¢} (t*) > 0.
Now suppose that there is a first place t* such that for some i € {1,...,n — 2}
PL>P1> P> > G =Giqp1 > > Pp_1 > P 2> P

at t*. Then at this point t*,

b; = B+ f(pi) = fldim1) + g(¢i) — 29(64) + g(pi1)
=B+ f(¢i) — 9(¢i) — f(Pi—1) + g(di-1)
=0B+1[9 = (&) (pi1 — ¢4)
>

and

Gip1 = B+ [(diva) — f(9i) + 9(iv2) —29(¢i) + 9(¢i)
= B+ f(@it2) — f(¢i) + 9(Pit2) — 9(i)

=B+ — F1(&)(bir2 — ¢i)

<8,
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so ¢;(t*) > @i 1 (t*). Therefore in a small neighborhood (t* — 6,t*) of t* (t* > 0), we
have ¢;11(t) > ¢;(t) since ¢;(t*) = ¢;41(t*). This leads to a contradiction.
Hence we can conclude that ¢r, > ¢1(t) > ¢a(t) > -+ > pp_1(£) > dn(t) > dg.

Suppose ¢1, > G1(t) > Galt) > - > du_r(t) > gull) = b at a first place £
then

¢ :ﬂ f(¢n 1)+g(¢n 1)72g(¢ﬁ)
= ) ( ) - f(d)n—l) + g(¢n—1)
=g = F'1E)(Sn-1— ¢3)

> 0.

This is a contradiction since we have ¢/ (t) < 0 so far.

Hence ¢ > ¢1(t) > ¢2(t) > -+ > dn_1(t) = dn(t) > ¢p.

Now suppose ¢r > ¢1(t) > ¢pa(t) > -+ > dn_1(t) = Pn(t) > ¢p at a first place
t*; then at t*

¢;’L =B~ f(on) + 9(Pn-1) — 29(¢n)
= B - [f(¢n—1) + g(¢n—1)]

and

(b;hl =B+ f(¢n) — f(dn—2) + 9(dn) — 29(Pn—1) + g(dn—2)
=B+ f(¢n) — f(dn—2) — 9(Pn) + g(dn—2)

=0+19 — f'1(&)(Pn—2 — bn).

> 0.

Since ¢,,_1(t) > ¢ for t > 0 by the assumption of the theorem,

J(n-1) +9(dn-1) = f(Pn-1) + 9(Pn-1) = [f(¢r) + 9(¢r)]

=[f" +9'(&2)(bn-1 — ¢r)
>0

at t*. So ¢, (t*) < ¢,,_,(t*). Hence in a small neighborhood (¢* — 6, ¢*) of t*, we have
On(t) > ¢pn_1(t) which is a contradiction. Therefore Claim 1 is proven.

Suppose (A.5) breaks down at some first place to > 0 (otherwise the proof is
finished with ¢ = 4+00) and ¢}(t2) # 0 for some i € {1,...,n} (otherwise the proof is
finished with # = ¢5). Then we have six cases to consider.

CASE 1. There is some | > 2 such that ¢! (t2) > 0, ¢;_,(t2) <0, ¢j(t2) =0, and
Pi(te) <0 forie{2,...,n} —{l—1,1}.

CASE 2. There is some l € {3,...,n — 1} such that ¢ (t2) > 0, ¢i(t2) = 0 for
i=2,...,l and ¢; (t2) <0,1€{3,...,n—1}.

CASE 3. ¢/1(ﬁ2) = (]5/2(t2) =0 and (bg(tg) <0, (ZS;(tz) <0,i=4,...,n

CASE 4. ¢)(t2) =0 and ¢}(t2) <0,i=2,...,n

CASE 5. ¢)(t2) >0, ¢h(t2) =0 and ¢j(t2) <0,i=3,...,n

CASE 6. ¢}(t2) >0 and ¢i(t2) =0,i=2,...,n

Assume Case 1 is true. Then we have

Gtz =€) = B+ f(¢rr1(t2 =€) — f(dr-1(t2 —€))
+9(p111(t2 — €)) — 29(di(t2 — €)) + g(P1-1(t2 — ¢))
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= ¢i(t2) — f'(dr41(t2)) 11 (t2)e + f'(di—1(t2))d1_1 (t2)e
= 9/ (P141(t2)) P41 (t2)e + 29" (du(t2)) 1 (t2)e
— ¢ (¢1-1(t2 ))¢z 1(t2)e + o(e?)
— 1 (t2)[g" + fl(Prr(t2))e
— o1 1(f2)[9 FU¢1-1(t2))e + o(e?)
>0
for € > 0 small enough (since ¢’ & f’ > 0 in J). This is a contradiction! So Case 1 is

eliminated in our concern.
Assume Case 2 is true. Then

$i(t2 =€) = =g (t2)[g" + F1(dr11(t2))e + o(€?)

>0

for € > 0 small enough. This is a contradiction! So Case 2 is also eliminated.
Case 3 can be eliminated in the same way as Case 2.
Hence we have Cases 4-6 left.
If case 4 is true, then

$1(t2 + ) = $y(t2)[g" + ['1(2(t2))e + o(”)
<0

for small € > 0. Then [, = 0 such that I, =[; — 1.

If Case 5 is true, then we have that for small € > 0, either ¢4(¢) > 0 in (t2,t2 +¢)
or ¢4(t) < 0 in (t2,t2 + €) (note that ¢4(¢) =0 in (t2,t2 + €) cannot be true). Hence
lQ = 2, i.e., lg = ll —|— 1 or 12 = 1, i.e., 12 = ll.

If Case 6 is true, then we can show that

2(t2) >0,
oD (ty) = 0, j=2,...,i—1,
6D (ty) > 0, i=3,...,n
such that ¢5(t) >0 (i =2,...,n) in (t2,%2 + ) for € small enough. Then lo = n.
And for Cases 4-6, we can prove by using the same techniques as above that

br > d1(t2) > -+ > dnlt2) > dp.
So we are done with £ = 1.
Now suppose (2.16)—(2.19) hold for 1,2,... k — 1 with l1,...,l;, and t; < {3 <
L < tg.
Then for ¢t € (¢, tx + 6) (6 > 0 is small)
oi(t) >0, i=1,...,1,
Pi(t) <0, j=l+1,....n
CLAIM 2. From ty, as long as
GL(t) >0, i=1,...,1,
(A7)
Pi(t) <0, j=Il+1,...,n

we always have (A.6).
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The proof is similar to Claim 1; we just ignore it here.

Suppose (A.7) breaks down at a first place 41 > ¢ and ¢ (tx4+1) # 0 for some
i € {1,...,n}; then several cases should be considered carefully.

CASE 1. There is | < li, such that ¢}(tg41) <0, ¢2+1(tk+1) >0, ¢i(tkr1) >0 for
i€ {l,..., Ik} —{l,l+ 1}, and ¢ (tp41) =0 for j =l +1,...,n.

CASE 2. There is | > I +1 such that ¢}(ti41) >0, i=1,..., 1k, ¢]_;(tr41) <O,
#y(tk+1) =0, and ¢ (tr+1) <0 forj € {lx +1,...,n} —{l - 1,1}.

CASE 3. There is somel € {2,...,l—1} such that ¢ (tg+1) > 0 fori e {1,...,1—
2}, ¢ (tht1) > 0,¢)(tk41) = 0 for j € {l,..., Ik}, and ¢(tkt1) < 0 for j €
{lg+1,...,n}.

CASE 4. Thereisl € {lx+2,...,n—1} such that ¢}(tx4+1) > 0 fori € {1,... 1},
i(trrr) = 0 for j € {lx +1,...,0}, ¢ (tkv1) < 0, and @(try1) < 0 for j €
{{+2,...,n}.

CASE 5. ¢;(tk+1) >0 fOT‘ i € {17...7lk — 2}, (b;k—l(thrl) > O>¢2k(tk+1) =
B, 1 (tes1) =0, and @(tgy1) <0 fori € {lx +2,...,n}.

CASE 6. ¢;(tk+1) >0, 1 € {1, B e 1}, ¢;k(tk+1) = (b;k-l-l(tk"‘l) =0,
¢gk+2(tk+1) <0, ¢;(tk+1) <0 forje {lk +3,... ,n}.

CASE 7. qf);(tk_;_l) >0 forie{l,...,lp — 1}, (Z%k(tk—&-l) =0, d);-(tk_,_l) < 0 for
RS {lk+1,...,n}.

CASE 8. Qb;(tk_H) >0 fori e {1, . ,lk}, ¢2k+1(tk+l) =0, and ¢;(tk+1) < 0 for
je {lk+2,,n}

CASE9. @(tpy1) =0 forie {1,..., Ik}, and ¢)(tx11) <O forj € {lp+1,...,n}.

CASE 10. ¢;(tk+1) > 0 fori € {1,...,lk}, and qﬁ}(tkﬂ) =0 for j € {lk +
1,...,n}.

By the techniques which we used in the case of £ = 1, Cases 1-6 can be eliminated.
Hence only Cases 7-10 are possible.

If Case 7 is true, then we have that for ¢ > 0 small enough, either ¢; () > 0 in
(tk+1,tk+1 + 6) or (,25;’c < 0in (tk+17tk+1 + 8). Then lk+1 =1 or lk—i—l =1 — 1.

If Case 8 is true, then for ¢ > 0 small enough, either ¢ ;(t) > 0in (tx41,tx41+¢)
or ¢2k+1 <0in (tg41,tp+1 +¢€). Then lgy1 =l + 1 or lg1 = lk.

If Case 9 is true, then for e > 0 small enough, we can prove that ¢;(t) < 0 in
(tgt1,tgy1 +€) fori=1,...,n. Then I =0.

If Case 10 is true, then for £ > 0 small enough, we can prove that ¢;(¢) > 0,i =
1,...,n; then Iy = n.

And for Cases 7-10, we can show that ¢r > ¢1(tgt+1) > -+ > dn(trt1) > @3
always holds. Hence the proof is completed for this part.

(ii).

CLAIM 3. Both ¢} (t) and ¢l,(t) can change sign at most once. And if ¢ (t)
changes sign once, ¢ (t) never changes sign. If ¢, (t) changes sign once, ¢} (t) never
changes sign. That is,

(a) if pi(t) <0,i=1,...,n fort € (tx,tx +¢), then ¢i(t) <0,i=1,...,n for
te (tka i);

(b) if ¢L(t) >0,i=1,....n fort € (tg,tx +€), then ¢;(t) >0,i=1,...,n for
t € (tg,1).

Claim 3 can be shown by contradiction. We ignore the proof here.

Hence by Claim 3, without loss of generality, we assume ¢} (t) never changes sign;
then we always have that ¢} (t) > 0 for 0 < t < f. So ¢1(t) increases as t increases.
Since ¢ > ¢1(t) > -+ > ¢pn(t) > ¢p, $1(t) is bounded above by ¢ such that
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lim, ; ¢1(t) = ¢1 for some ¢y € [¢g, ¢r]. Also we have lim, ; ¢} (¢) = 0 such that

o=5+£$U+MWAW—QM%)

Then lim, _; ¢o(t) = lim,_;[f + g]7'[f + g](¢2(t)) exists. Let ¢2 = lim,_; ¢o(t). By
the boundedness, ¢r, > ¢2 > ¢g.

By induction we can show lim, ; ¢;(?) :fz_bi, where gi_% € [¢ps,éL]. Since ¢ >

G1(t) > -+ > ¢n(t) > dp for t > 0, then ¢r, > ¢1 > -+ > dn > ¢p.

If we apply the argument in the proof of Theorem 2.3, we also can show ¢ >

b1 > > dn > g

Remark. If we recall the proof of Claims 1 and 2, we need to assume ¢,,_1 > ¢gr

along the trajectory. If this condition breaks down somewhere, the monotonicity may
be destroyed.

(1]
2]
(3]

[10]

(1]
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REFINABLE FUNCTION VECTORS*
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Abstract. Refinable function vectors are usually given in the form of an infinite product of their
refinement (matrix) masks in the frequency domain and approximated by a cascade algorithm in both
time and frequency domains. We provide necessary and sufficient conditions for the convergence
of the cascade algorithm. We also give necessary and sufficient conditions for the stability and
orthonormality of refinable function vectors in terms of their refinement matrix masks. Regularity
of function vectors gives smoothness orders in the time domain and decay rates at infinity in the
frequency domain. Regularity criteria are established in terms of the vanishing moment order of the
matrix mask.

Key words. refinable function vectors, stable basis, cascade algorithm, regularity

AMS subject classifications. Primary, 41A15; 42A05; 42A15; 41A30; Secondary, 39B62;
42A38

PII. S0036141096302688

1. Introduction. This paper presents a complete characterization of the con-
vergence of the cascade algorithm and the stability and orthonormality of compactly
supported refinable function vectors in terms of their refinement matrix masks. Reg-
ularity criteria for refinable function vectors are also established in terms of the van-
ishing moment order of the matrix mask.

We start with a finite set of compactly supported functions ® C Lo(R®). The FSI
space (finitely generated shift invariant; see [2]) S(®) generated by ® is the smallest
(closed) shift invariant subspace of Lo(R?®) containing ®. Here we recall that a space
is shift invariant if it is invariant under all shifts, i.e., invariant under all integer
translations.

It is very convenient to discuss the shift invariant space in the frequency domain
by using Gramian analysis. For a given set of functions ®, the pre-Gramian matrix
at w € T* is defined as a Z° x ® matrix by

J(w) = Jo(w) := (P(w + 27a))a.e
where ¢ is the Fourier transform of the function . Its adjoint matrix
T (W) = Jg(w) = (P(w + 27a)) .0

is a ® X Z® matrix. The Gramian matriz of functions ® is a ® x ® matrix defined as the
product of J* and J, i.e., Jj(w)Jp(w). The pre-Gramian matrix was first introduced
in [22]; the basic properties of the pre-Gramian and its roles in the Gramian analysis
for shift invariant spaces (not necessarily an FSI space) can be found in [22]. In this
paper, we will often use the matrix J*J =: Gg =: G instead of J*J. Since the
properties of the Gramian matrix J*J in which we are interested do not change when
the conjugation is taken, we also call G¢ the Gramian matrix of ®.

This paper uses functions that are defined on T?, the s-dimensional torus. These
can be viewed as 2m-periodic functions, via the standard transformation R® 3 w —

*Received by the editors April 29, 1996; accepted for publication (in revised form) October 15,
1996.
http://www.siam.org/journals/sima/29-1/30268.html
fDepartment of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singa-
pore 119260 (matzuows@leonis.nus.sg).
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e := (e, ..., e™s) € T. Though we may refer to such functions as defined on T?,
we always treat their arguments as real. Thus, “multiplying a function defined on T*?
by a function defined on R*” simply means “multiplying a 27-periodic function by ....”
Following this slight abuse of language, we write “Q C T*” to mean “Q C [—m, 7]%.”
The functions ® used in this paper are solutions to functional equations of the

type

(1.1) =) P.®(2 —a),

Q€L

where the “coefficients” P, are ® x ® matrices and ® is a #®P-dimensional column
refinable function vector. We assume throughout that the refinement matrix masks
are supported in [0, N]°. Here we use ® to denote both the set of functions ® and the
column function vector ®.

Define

P:=2"° Z P, exp(—ia-) .
a€ZLS

Then, P is a & x ® matrix, so each entry is a trigonometric polynomial such that
their Fourier coeflicients are supported in [0, N]°. The functional equations (1.1) can
be written as

(1.2) d:=P(-/2)d(-/2).

Equations of the type (1.2) are called vector refinement equations; the matrix P
is called the refinement (matriz) mask, and ® is a (P-) refinable function vector.
Since each entry of P is a trigonometric polynomial, the function matrix P satisfies

[P(-) = PO)]| < const] -,

where for any d x d matrix M, |[M|| := maxy =y [|[Mv]|/|v||, with [[v]| the Euclidean

norm of the column vector v € R%.
If lim,, oo P(0)™ exists and is nontrivial, then the infinite product

P> .= ﬁ P(27")
k=1

converges uniformly on compact sets. Further, ® = P>a is a solution of (1.2), where
a is a right eigenvector of P(0) (see [12], [11] for the univariate case and [15] for
the multivariate one). The functions ® are compactly supported distributions with
supp(®) C [0, N]*. We further remark that the existence of a solution d of (1.2) only
requires the convergence of [[7_, P(277.)a, where a is a right eigenvector of P(0)
corresponding to the eigenvalue 1 (see [12] and [4]). It has been shown in [4] that
[1;-, P(277-)a converges if p(P(0)) < 2 (see also [12]).

We say that a matrix M (or linear operator) satisfies the condition on eigenvalues,
or Condition E for short, if the spectral radius p(M) < 1, 1 is required to be the only
eigenvalue on the unit circle and must be a simple eigenvalue. Condition E is a useful
concept in the wavelet theory and applications (see [3], [23], [24], and [18]).

Assume that P(0) satisfies Condition E. Then, there is a nonsingular matrix U
so that UP(0)U~! has the form

(1.3 (o 1)
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where
Ay o2 0 0 ... 0 O
T A
0 0 0 0 ... 0 A

with [\;| <1, and p; = 1, 0r 0, i = 2,...,#®. Define P; = UPU!; then ®! := U®
satisfies the refinement equations

(1.4) ol =P(-/2)8(-/2),

where ® is a solution of (1.2).

The stability, regularity, and convergence of the cascade algorithm discussed in the
paper do not change, even if we consider the refinement equation (1.4) instead of (1.1).
Furthermore, as we will see in section 3, the problem of checking the orthonormality
of ® can be reduced to that of checking the stability of ®'. Therefore, we can always
assume that P(0) has the form given in (1.3), without losing anything.

In this case the vector if := (1,0,...,0) is a left eigenvector and i; is a right
eigenvector of P(0) corresponding to eigenvalue 1. We further require that P have
vanishing moments of at least order 1, that is, equivalent to the fact that

iTP(nv) = 6,il, ve€Z°/2Z°.
This implies that
i7®(21q)) = b4, a € Z°.

Altogether, we assume, throughout this paper, that the mask P satisfies the
following conditions.

BASIC CONDITIONS 1.5. We say that P satisfies the basic conditions if

(i) P(0) has the form of (1.3), and

(i) iTP(nv) = 6,iT, v € Z°/275.

It has further been shown in [15] (see also [12]) that if the basic conditions 1.5
hold for P, then

P°°=ﬁP(-/2j)=(cf> 00 --- 0).

j=1

In particular, if &)(0) =% 0, the solution ® is determined uniquely up to a constant
factor. In fact, d = cP>°b, where b is an arbitrary vector satisfying i b = 1.

The functions ® can be approximated by the following cascade algorithm: starting
with a function vector ®; which satisfies

Z ilq)()(- - a) == 1,
a€Zs
the function vector ®,, is defined inductively by

(1.5) b, = Z Po®,_1(2 —a).
a€ZS
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The cascade algorithm can be iterated in the frequency domain by taking the Fourier
transform of (1.5):

(1.6) D, =P(-/2)®,_1(-/2).

It is clear that the sequence (®,,), converges in the Lo-norm if and only if the sequence
(&)n)n does. (We say (®,,), converges to ® in the Lo-norm if each component of (®,,),
converges to the corresponding component of ® in the Lo-norm.) A sufficient condition
for the convergence of the cascade algorithm is given in [4], under the assumption that
® and its shifts are linearly independent; s = 1 and EDO = X[-=,x@, Where a is a right
eigenvector of P(0) corresponding to eigenvalue 1. If the sequence (®,,), defined by
(1.5) converges, then ® C Ly(R?®).

Define
(L.7) Sh = SM(@) = {f(2") : f € S(@)}.
Then,

(1.8) Sk c gk+L,

It is proven in [14] that if
(1.9) Ukez Upead supp @(Qk‘) =R?

holds up to a null set and (1.8) holds, then UrczS* is dense in Ly(R®). If the refinable
function vector ® is compactly supported, (1.9) is always true. It has further been
shown in [14] that if ® C Lo(R®), then NiezS* = {0}. Altogether, we have the
following result.

RESULT 1.1. Let ® be the compactly supported P-refinable function vector. If
® C Lo, then

(1.10) UrezSk = La(R®)  and  Niez S = {0}.

We say that a set of functions ® is stable if ® and their shifts form a Riesz basis of
S(®), and a set of functions ® is orthonormal if ® and their shifts form an orthonormal
basis of S(®).

A set of functions ® C Ly(R®) is stable if and only if

0<C1 < [Aloo < [Allo < Ca < 00, ae. weT?,

where A(w) and A(w) are the smallest and largest eigenvalues of the Gramian matrix
Go(w). If the set of functions ® is compactly supported, then @ is stable if and only
if det G(w) # 0 for all w € T®. The set of functions ® is orthonormal if and only if
G(w) =1, a.e. w € T%, where [ is the identity matrix. The proofs of these results can
be found in many articles (see, e.g., [13], [2], [9], [7], [22], [5], and [15]).

Once the set of functions ® C Lo(R?) is stable (or orthonormal), it would be
advantageous to know the regularity of ® in order to make better use of ®. An
estimation of the regularity of ® (s = 1) in terms of P has been given in [4], under the
assumption that the refinable function vector ® and its shifts are linearly independent.

By the above discussion, if the refinable function vector ® C Lo (R?) is stable,
or orthonormal, the sequence of subspaces (S*);, k € Z of Ly(R*) forms a multires-
olution; recall that a sequence (S*); forms a multiresolution if the sequence (S¥)j
satisfies (1.10) and is refinable (S* C S**1 k € Z) and if the refinable function vector
& is stable or orthonormal.
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The multiresolution generated by several functions was first introduced by [10], [9]
(see also [1] and [6]). Result 1.1 is due to [14]. The first set of examples of orthonormal
refinable function vectors ® were given in [8], [7], and [6]. Examples of stable refinable
function vectors ® were given in [9]. Compactly supported wavelets and prewavelets
from these examples were constructed in [7], [8], [25], and [16] (see also [5]).

It is of particular interest to construct compactly supported wavelets and pre-
wavelets from compactly supported refinable function vectors and the refinement
matrix masks. An algorithmic method in the construction of compactly supported
wavelets and prewavelets from an arbitrarily given P refinable function vector ® was
obtained in [16], where s = 1. The problem of wavelet constructions is much more
challenging in higher dimensions even when #® = 1 (see [13] and [14]). However, in
dimensions no greater than 3, a method for the case #® = 1 has been provided in
[19] and [20], under a mild condition on refinement masks.

Since the solutions ® of (1.1) are defined via their Fourier transform by the
refinement matrix mask P, and since in practice only the refinement matrix mask
is available for checking, it is useful to transfer the characterization of the stability
and orthonormality of ® by the Gramian matrix of ® to characterization in terms
of the mask. Similarly, it is necessary to characterize the convergence of the cascade
algorithm defined by (1.6) and set criteria for the regularity of refinable function
vectors in terms of the refinable matrix mask P.

For this, we introduce the transition operator defined on H, the space of all
® x ® matrices whose entries are trigonometric polynomials such that their Fourier
coefficients are supported in [— N, N]°. Here, we recall that the refinement mask (P, )
is supported in [0, N]*. The transition operator T¢ := T is defined by

TH:= Y P(/2+4m)H(-/2+7v)P*(-/2+7v), HeH.
vEZS |25

Then, T is a linear operator on H.

Denote by Hj;s the space of all & x ® matrices whose entries are trigonometric
polynomials such that their Fourier coefficients are supported in [—M, M]*. Then, if
M > N, the transition operator T can be defined as an operator on Hj,;. Further,
since if M > N, T is a Fourier coefficient support reduced operator on Hy;, any
eigenmatrix of nonzero eigenvalues of Ty, is in H. Therefore, all results of this paper
can be stated in terms of the transition operator T on Hj; for M > N, although they
are stated in terms of the transition operator T on H.

If the functions @ are the solutions of refinable equations (1.1), and if one writes
J(w) as a column block matrix by

J(w) = (P(w + 27V + 4ATQ) ) (v,a) x pe (25 /22 xZ5) x B>
then
To(w) = (P(w/2 + 7)T* (/2 + 7))y e
Hence

(1.11) Gw) = J*(w)J(w) = Z Pw/2+ m)G(w/2 4+ mv)P*(w/2 + 7v).
Ve |21

Therefore, the Gramian matrix G¢ € H is an eigenmatrix of eigenvalue 1 of the
transition operator T.
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Equation (1.11) also leads to the following result, which was proven by [10], [9],
8], [5], and [15].

RESULT 1.2. If the compactly supported refinable function vector ® is orthonor-
mal, then

(1.12) I= > Pw2+m)P(w/2+mv), weT.
VEZLS |27

If the refinable function vector ® is stable, then the matrix

> Pw/2+ )P (w/2 + )
vELS 273

is not singular for all w € T*®.

A mask P satisfying (1.12) is called a conjugate quadrature filter, or CQF.

Since H is a finite dimensional space, the operator T can be represented by a
finite order matrix with respect to some fixed basis of H. The matrix is also denoted
by T, and we will identify the operator T with the matrix T.

We say that the cascade algorithm defined in (1.5) converges, if ®,, defined by
(1.5) converges to ® with </I\>(O) =i, for all &y which satisfy

(1.13) > il ®(—a)=1, and Gg, €H.
aEZs

We note that if P satisfies the basic conditions (1.5) and ®q satisfies (1.13), then the
®,, defined by the cascade algorithm (1.5) always converges to ® with ®(0) = i; in
the distribution sense.

The rest of the paper is organized as follows. In section 2, we will prove that
the cascade algorithm converges if and only if the transition operator T satisfies
Condition E. In section 3, we will prove that ® is stable if and only if the transition
operator T satisfies Condition E and the corresponding eigenmatrix is nonsingular on
T*. Consequently, we show that if ® is stable, then the cascade algorithm converges;
if P is a CQF mask, then ® is orthonormal if and only if it is stable. Regularity
criteria in terms of mask are established in section 4. We also remark that most of
the results in this paper can be generalized to a general dilation matrix easily.

Finally, we remark that the corresponding results for the case #® = 1 were
obtained in [18] (convergence of the cascade algorithm), [17] (stability and orthonor-
mality), and [21] (regularity).

2. Convergence of cascade algorithms. In this section we present a complete
characterization of the convergence of the cascade algorithm defined by (1.5).

In what follows, we will identify the matrix H € H with the corresponding unique
sequence (hi)pcp for a fixed basis B, where

H=> hpB.
BeB
We use the standard basis
B :Z{Bz‘j = (bﬁl/)1§7l/§#¢ cH:
b;')fj = exp(—ia‘); bﬁl/ =0, (la l/) # (7'»])’ o€ [_Na N]S}

in the proof of the sufficiency part of the next theorem.
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We also note that a sequence of matrices (T™) generated by a finite order matrix
T converges to a nontrivial matrix if and only if the spectral radius p(T) < 1, and
1 is the only eigenvalue on the unit circle and is nondegenerate. Furthermore the
sequence (T™) converges if and only if for all H € H, the sequence (T™H) converges.
Here the convergence of the sequence (T™H) is equivalent to the convergence of the
sequence (b5 ), for a fixed basis B. Since T(lim,, T"~'H) = lim,, T" H, the matrix
lim,, T"H is an eigenmatrix of T corresponding to the eigenvalue 1. In particular, if
T satisfies Condition E, then, for arbitrary H € H, lim,, T"H = constGg.

A special basis of H is needed in the proof of the necessity part of the next
theorem. The basis B;, chosen is the one such that for each B € B;,, there are ®,
and g satisfying (1.13) and B = J3 Ju,.

Define D = Dy U Dy, where

Dy == {Df; = (dly )i<ir<po € H:
dil = exp(—ia-), d;):l/ = 07 (la l/) 7é (17 1)7 o€ [_N7 N}s}v

and
Dy :={D7; = (diy )i<iy<go €H: df; =1, df =exp(—ia), 1<4,
di; = exp(—ia:), d;1 =1,
iy =0, if (I,I) # (i,1),(1,1), (4,1), and (1,4); o € [N, N]*}.
Then define E = E; UEs UE3, where
E, ::{Egj = (€lofl/)1gl,l/§#¢> cH:

et1 =1, ef;= exp(—ia-), 1 <i,5i # 7,

a a ;
€i1 = 1a €15 = exp(—wp),

ey =0, if (1,1") # (1,1),(¢,1),(1,4),and (4,§); € [-N,N]*};

E, ::{Eﬁj = (efy hiciv<gas €H: ey =1, et = exp(—ia-), 1 < j,
e = 0, otherwise; a € [-N,N|*}

and
Es:= {BT: B € Ey}.

Then, the set B,, := DU is a basis of H.
For function vectors ®g and ¥y satisfying (1.13), define function vectors

@, = (‘Piz)?ﬁiﬁ#@ and ¥, = (Qﬁ;)lgig#@
via their Fourier transform as
D, :=P(-/2)®,_1(-/2), and ¥, :=P(-/2)¥,_(-/2).

Let G,, = J3, Jw,. Then

TGna= Y P(2+m) Ty (/2+m)Tw,_, (/2 +70)P*(-/2+ 7v) = Gy
VEZLS [277
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If the cascade algorithm converges in the Lo-norm, then each entry of G,, converges
to the corresponding entry of Gg in the Li-norm. This implies G,, converges to G
in the || - ||1-norm on H, where for H(w) := (h; ;(w))i<i j<#a,

1H= Y iyl

1<i, j<#®

For a fixed B, let

G, = Za%B and Gg = ZaBB.

BeB BeB

Then, the convergence of the cascade algorithm implies that the sequence of the
sequences (a™),, converges to the sequence a.

Finally, we note that for any ® := (¢')7 and ¥ := ()T, the (¢!, ¢! )th entry of
J3Jw can be written as

1) S @2 (+2m8) = 3 (ol + BT (—))(a) expl—ia).

BEZS =

We are ready to prove the following theorem.

THEOREM 2.1. If the basic conditions 1.5 hold for P, then the cascade algorithm
converges if and only if the transition operator T satisfies Condition E.

Proof. “=" Since T satisfies Condition E, the sequence of linear operators
T" converges. Let ®, be a sequence of function vectors generated by the cascade
algorithm (1.5) with ®g satisfying (1.13). Then Gg, = T"Gg, converges. Since for
each fixed [, ||, || is the coefficient of Blo’l € B, if we express G, by By, and since H
is a finite dimensional space, ®,, is bounded in the Lo-norm. Hence any subsequence
of ®,, contains a weakly convergent subsubsequence of ®,,. Since ®,, converges to ¢
in the distribution sense, and since weak convergence is stronger than convergence
in the distribution sense, ®,, converges to ® weakly. Therefore, to show that ¢,
converges strongly to ®, it remains to show that the Lo-norm of ®,, converges to that
of ®. Since G is an eigenmatrix of T corresponding to the eigenvalue 1 and since T
satisfies Condition E, G4 is the unique eigenmatrix of T. Therefore,

lim T"Gg, = lim Gg, = constGe.
n—oo n—oo

Since i Gg,(0)i; = i Go, (0)iy # 0 for all n, we have

0 # il Gp,(0)i; = lim i T"Gs,(0)is

n—oo

= lim il Gg, (0)i; = i] G5(0)i; = constil G (0)i;.

n—oo

Hence const = 1, and

lim TTLG@O = lim Gq)n = G@.
n—oo n—oo
Since for each fixed [, ||¢l | is the coefficient of B, € By and since H is a finite di-

mensional space, we must have lim,, ||¢L || = ||¢'|. Hence, ®,, converges to ® strongly
in the Lo-norm.
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“<=" We first prove that for any element B € B,,, there is a proper choice of
B = (¢")T and ¥y := ()7 satisfying (1.13) so that I3, v, = B.

For this, let f := X[=1/2,1/2]¢-

First, if B = D§; € Dy, then define ® = (p})” and ¥g = (¥§)7 so that f = f,
b = f(-—a), oh =0, and 5 = 0 if I,I' # 1. Then ®y and ¥y satisfy (1.13) and
Jg,Jw, = DYy € Dy by (2.1). For EY; € Ey (or Df; € Dy), define &g = (¢h)" and
Wy = (¥5)7 to be the function vectors such that ¢} = 1§ = f and @) = f and
) = f(-—a), ¥ =0, 1 # 1,i, and 1/16/ =01 # 1,j. Then the function vectors
®o and Wy satisfy (1.13). Further, the matrix Jg Jy, = Ef; € Ey if i # j (and
D;; € Dy if i = j) by (2.1). For EY; € By, define &g = (¢h)” and ¥y = (v§)7 so
that o =1 = f, and ) = 0 and ¢} = f(- — ) and @ =5 = 0if 1, # 1,j. Then
®o and Wy satisfy (1.13) and Jg Ju, = Ef; € E2 by (2.1).

Since the cascade algorithm converges, T"B converges to G for all B € By,.
Thus for any H € H, lim,, .., T"H = constG4; consequently, the sequence of matrices
(T™) converges. Therefore, the spectral radius p(T) < 1 and 1 is the only eigenvalue
of T on the unit circle. Further, 1 is a nondegenerate eigenvalue of T. To prove
that T satisfies Condition E, it remains to show that G is the only eigenmatrix of
eigenvalue 1. Let E € H so that TE = E; then

lim T"E = F = constGe.

n—oo

Hence, G4 is the only eigenmatrix (up to a constant multiple) of T corresponding to
eigenvalue 1. 1]

3. Stability, orthonormality, and biorthonormality. In this section we will
discuss the stability of refinable function vectors. We first give here a sufficient condi-
tion in terms of the eigenvalue of the transition operator T under which the function
vector ® is stable. Then, we will show that this condition is also necessary.

PROPOSITION 3.1. Suppose that the basic conditions (1.5) hold for P and ® C
Lo(R?®). If 1 is a simple eigenvalue of the transition operator T on H and the cor-
responding eigenmatrix nonsingular on T?, then the P-refinable function vector ® is
stable.

Proof. Since Gg is an eigenmatrix of T of the eigenvalue 1, the hypothesis of the
theorem implies that the matrix G¢(w) is nonsingular on T*®. Hence, the function
vector ® is stable. O

We note that if @ is stable, the simplicity of the eigenvalue 1 of T implies that
the corresponding eigenmatrix of the eigenvalue 1 of T is nonsingular on T?, since in
this case Gg is the only eigenmatrix of T. Therefore, to show that the condition in
the above theorem is necessary, one only requires to show that if ® is stable, then 1
is a simple eigenvalue of T.

Define

Vi:={H c H: (if Hi;)(0) = 0}.
Since for any H € H, H = ZBGBSP hpB, where the set By, is the basis defined in the

previous section, a matrix H € V; if and only if ZBG]BSP hp = 0 by the structure of
the element of B,,. Hence, the space V; has codimension 1. Since (i Gi;1)(0) # 0,
Go ¢ V1. Since P satisfies the basic condition (1.5), for any H € V4,
({(TH)i)(0)= > il P(mv)H(m)P*(mv)i; = 0.
VETS |27¢

Hence, V7 is a T-invariant subspace of H.
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The proofs of the following two propositions (Propositions 3.2 and 3.3) were orig-
inally in our earlier drafts. Before completing the paper, we received a preprint of
[15], which contains the same results (Proposition 3.3 and Theorems 5.1 and 5.2 in
there) with similar proofs. Thus, we will only provide an outline of the proofs here.

PROPOSITION 3.2. Let Hi(w) and Ha(w) be matrices so that each entry is a
continuous function on T*. Then,

(3.1) 5 Hy(w)(T"Hs)(w)dw = 5 Hy (), (w)He (27" w)IL, (w)dw,
where
(3.2) I, (w) := xonts (W H (w/29);n=1,2,....

Here we define the transition operator as an operator on the space of the all ® x ®
matrices whose entries are continuous functions on T®.
Proof. One can easily show that for any such H

T"H =Y TL,(- + 2ma) H(2 " (- + 27a))IT; (- + 27a),
aE€Zs

by induction. Replacing H by H,, multiplying by H;i, and integrating both sides of
the above identity lead to the fact that for any H; and Ho, (3.1) holds. a0

PROPOSITION 3.3. Assume that the P-refinable function vector ® is stable and
its mask P satisfies basic conditions (1.5). Then,

(i) for any Hy € H and Hy € V4,

lim Hy ()L, (w)H2 (27" w)IT} (w) dw

n—oo Jps

s N—00

z/]R lim Hy(w)I, (w)H(27"w)II} (w)dw = 0;

(ii) the transition operator T restricted to Vi has spectral radius < 1.

Proof. Since @ is stable, Gg > ¢I, with ¢ > 0. This leads to the fact that the
sequence (IT,IT%) is uniformly integrable (details in the proof of Theorem 5.2 of [15]).
Recall that the sequence

(HH(W)H;(W)), n:O717"'a

is uniformly integrable if for an arbitrary € > 0 there exist a finite measure set F' and
6 > 0 so that

L/ I, (w)IT% (1) dw < &
Rs\F
and

[ M @ <<

hold for all n for any measurable set D with the measure of D < §.
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That the sequence (II,(w)II¥(w)), is uniformly integrable implies that the se-
quence (Hip(w)IL,(w)Hz(27"w)II (w)) is uniformly integrable for any H; € H and
H, € V;. This implies that

N [ H (@)L () Ha (27)IT (w)d = / im_Hy ()11, () o2~ I (w) oo

Since (i{HQil)(O) = 0 and since P> = (EI\) 0o --- ())’
)=

lim Hy(w)I, (w)H2 (27 W) (w) = Hy(w)P>®(w)H2(0)P**(w) = 0.
Hence, the first statement holds.

For the second statement, assume that X is an eigenvalue of T restricted to V;
and H € V) is the corresponding nontrivial eigenmatrix. Then

A" . H*(w)H(w)dw = . H* (W), (w)H(27"w)IL} (w)dw.

Hence, (i) implies that

lim H* (w)I,(w)H(27"w)I} (w)dw = /R lim H*(w)IL, (w)H (27 "w)II} (w)dw = 0.

n—oo Jps s N—00

This gives

lim A" | H*(w)H(w)dw = 0.

n— o0 Ts

Therefore |A| < 1 by the fact

H*(w)H(w)dw # 0. ad
T

From the two propositions above, we obtain the following result.

LEMMA 3.4. Assume that P satisfies basic conditions (1.5) and the corresponding
refinable function vector ® is stable; then the transition operator T satisfies Condition
E. In particular, 1 is a simple eigenvalue of the transition operator T.

Proof. Let By be a basis of V. Since G is not in V; and V; has codimension 1,
G UBy is a basis of H. Therefore, an arbitrary H € H can be written uniquely as

H=aGs + Hy, Hye V.
Let H be the eigenmatrix of the eigenvalue A of T,
AaGe + AHy = TH = aTGge + THy = aGe + THy.

If A # 1, then a = 0. Thus, H = Hy € V; is an eigenmatrix of A. This implies [A| < 1
by Proposition 3.3. If A = 1, then Hy € V7 is also the eigenmatrix of T corresponding
to the eigenvalue 1; thus Hy = 0 again by Proposition 3.3. Hence, p(T) < 1 and 1
is the unique eigenvalue on the unit circle. Further, G4 is the only eigenmatrix of
eigenvalue 1 up to a constant multiple.

Finally we need to show that 1 is a simple eigenvalue of T. If not, it must be a
degenerate eigenvalue with only one eigenmatrix. In this case, there exists a matrix
H € H such that TH = G¢ + H. Let Hy = ¢Gg + H so that H, € V. Then

/ (T Hy) (@) = / T () H (27T () = / ((c+ n)Ga(w) + H(w))dw.

s
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The left-hand side tends to 0 by the stability of the vector function ® and (i) of
Proposition 3.3, while the right-hand side tends to co, which is a contradiction. 0

An immediate consequence of this lemma is the following corollary.

COROLLARY 3.5. Assume that P satisfies the conditions (1.5). If the refinable
vector function ® is stable, then the cascade algorithm converges.

The next theorem, the main result of this section, follows directly from Proposi-
tion 3.1 and Lemma 3.4.

THEOREM 3.6. Assume that P satisfies the basic conditions (1.5). The P-refinable
function vector ® is stable if and only if the corresponding transition operator T
satisfies Condition E and the eigenmatriz of eigenvalue 1 is nonsingular on T*.

Proof. If the transition operator satisfies Condition E, then the cascade algorithm
converges and ® C Ly(R?). Therefore, ® is stable by Proposition 3.1. If ® is stable,
then Lemma 3.4 implies that the transition operator satisfies Condition E. Gg is the
eigenmatrix of a simple eigenvalue 1 of T which is nonsingular on T*. 1]

REMARK 3.7. If the transition operator T satisfies Condition E and if eigenvalue
1 has an eigenmatriz which is nonsingular on T*, then the compactly supported P-
refinable functions ® C Lo(R®) by the fact that the corresponding cascade algorithm
converges. Hence the sequence (S*(®)) forms a multiresolution of La(R®) with the
functions ® and their shifts forming a Riesz basis of S(®) by Result 1.1 and Theorem
3.6.

If P is CQF, the identity matrix [ is an eigenmatrix of the transition operator T
corresponding to eigenvalue 1. A consequence of Theorem 3.6 is as follows.

THEOREM 3.8. Suppose that P is a CQF matriz mask which satisfies the basic
conditions (1.5); then the following statements are equivalent:

(i) the refinable function vector ® is orthonormal,

(ii) the transition operator T satisfies Condition E,

(iii) the refinable function vector ® is stable, and

(iv) the corresponding cascade algorithm converges.

Remark 3.7 gives the following corollary.

COROLLARY 3.9. Suppose that P is a CQF matrixz mask which satisfies the basic
conditions (1.5). If the corresponding transition operator T satisfies Condition E, then
the sequence of spaces (S¥(®))x forms a multiresolution of La(R*) with the functions
O and their shifts forming an orthonormal basis of S(P).

In the rest of this section, we discuss the biorthonormality of two refinable function
vectors ® and ¥. Let Py and Py be the refinement masks of functions ® and ¥
satisfying the basic conditions (1.5) and the condition

(3.3) > Po(-/2+ )Py (/24 mv) =1
vELS |27

We say that ® and ¥ are biorthonormal if both function vectors ® and ¥ are
stable and

T () Jy(w) =1, €T

Here again we are interested in characterizing the biorthonormality in terms of
the matrix masks Pg and Py. The following result was shown in [15, Theorem 5.3],
which is the main result of [15].

RESULT 3.10. Let Pg and Py be the refinement masks of refinable function vectors
® and U satisfying the basic conditions (1.5) and (3.3). Assume that G¢(0) > const]
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and Gy (0) > constl. Then ® and U are biorthonormal if both Te and Ty have the
spectrum radius < 1 on Vj.

We note that if the ® and ¥ are stable, then by Proposition 3.3 (ii) the conditions
in the above result are satisfied.

THEOREM 3.11. Let Py and Py be the refinement matriz masks of ® and ¥ which
satisfy the basic conditions (1.5) and condition (3.3). Then the following statements
are equivalent:

(i) the refinable function vectors ® and U are biorthonormal;

(ii) both ® and U are stable; and

(iii) the transition operators T and Ty satisfy Condition E, and the correspond-
ing eigenmatrices of eigenvalue 1 of Te and Ty are nonsingular on T?.

Proof. The equivalence of (ii) and (iii) follows from Theorem 3.6. Since if ® and
U are stable, the conditions in Result 3.10 are satisfied; (ii) implies (i) by that result.
Finally, (i) implies (ii) by the definition of the biorthonormality of ® and V. 0

4. Regularity of refinable function vectors. In this section, we establish
some criteria for the regularity of refinable function vectors.

We say that the mask P satisfying the basic conditions (1.5) has vanishing moment
order r if conditions

(4.1)  DP(A*(2w)P(w)) =i P(DPA*)(0)8,, vez)22°, |8 <r-1,

|w:7ru

hold for some

A= Y afexp(-iB),

|B]<r—1

where ag € R#®.

As we did in [21] for the case #® = 1, we will connect this vanishing moment
order to the regularity of ®.

We say that ® := (¢")T € C7 if each component ¢! € C7. Recall that a function
p e C? for n <y < n+ 1 provided that o € C™ and

|DPo(x +t) — DPp(z)| < const|t|y " for all |3| =nand|t| <1

for some constant independent of x. This number is related to

Ko = sup {n : / (1 + |w]?)*|P(w)|?dw < oo}
Rs

by the inequality v > ko — s/2.
Define

Vo= {H € H: (D’(A"(w)H(w))|,,)" = D (H(w)Aw)) 0, |Bl<r—1}

lw=0>—

In the case that r — 1 > N, we replace H by H,._; in the above definition of V..
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Since

(42) DA™ (2w)PW)),_., =i PI(DPA*)(0)5,, vez*/2Z° |B]<r—1,

we have that
(DB(A*(w)TH(w))|w:0)T = DB(TH(w)A(w))|w:0 =0, forallH e V., || <r—1.

Hence, the space V,. is an invariant subspace of the transition operator T.

In the case r = 1, the space V; defined here is an invariant subspace of V; defined
in section 3, since A*(0) is the left eigenvector of P.

For each H(w) := (hi j(w))i<ij<#o € V,, define

1Hr = D> lhigOlle.

1<, j<#®

If H is a constant matrix, this norm is the sum of the modulus of all entries.
— ITH]| :
Then the operator norm [|'T|,, | := supgev;\ jo} YaTe on V; satisfies
. 1
nlggo HTlnw I = P

where p is the spectral radius of T, . Hence, there exists Nt such that for any
H €V, and for all n > N,

(4.3) IT"H|r < [T"[[|[H||r < const(p + )" || H]F,

where ¢ is arbitrarily small.

The proof of the following proposition is carried out by modifying the proofs of
Proposition 3.6 of [21] and Theorem 5.2 of [15].

PROPOSITION 4.1. Suppose P satisfies the basic conditions 1.5 and conditions
(4.1). Then for the P-refinable function ® := (o")T, there ezists a constant C' such
that

/ 8 @) dw < Clp+2)"*,

n

where F,, := 2"T*\2"~1T* for all n > Nt and ¢ is arbitrarily small.
Proof. 1t follows from (4.3) for any H € V.,

Since none of the choices of the constants in this proof depend on n, for simplicity we
denote all constants by “const” even though the value of this may change with each
occurrence.

Let H(w) := (3;_, (1 — cosw(¢))"~*)I. Since
(DP(A* (W) H (W))),p)" = D (H(w)A(w))

< const(p+ &)"||H||r-
F

/Fn T"H(w)dw

:Ov |5|§T—17

‘u:()

we have H € V. and H > T for all w € T*\(1/2T*¥). Since ||P(w)—P(0)| < const|w||,
the function @ is bounded on T*.
We also note that

B (w) = I, (w) D (2~ V).
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Hence we have

/ |@l(w)|2dw:/ il D (w)®* (w)ijdw
Fp

n

/ i 1L, (w) (2~ (D) * (2~ (D W) ITE (w)iydw
Fr

IN

const / T, (w) H (2~ D) T (w)isde
F

n

IN

const/ i TL, (w) H (2~ V)T (w)igdw
2nTs

IN

const|| IL, (W) H (2~ V)T () dw||
271’]1‘5

const]| / (T ) (w)dw|
TS

const(p + )",

IN

where i; is the ® x 1 column vector whose Ith entry is 1 and all others are 0. ]

This proposition together with the usual Littlewood—-Paley technique leads to the
following estimate of the regularity of the refinable function vector ®.

THEOREM 4.2. Suppose P satisfies the basic conditions 1.5 and the conditions
(4.1), and let p be the spectral radius of T), . Then the function ® = (£")7 is in
CV=¢ for any e >0 and v = —log p/(2log2) — s/2.

Proof. Since when n > N,

/ |3 (w)|?dw < constp™ !,
]:F'Vl

and since the function @' is bounded on 2VN7T*,

oo
/ (1 + |w|?)"|@" (w)[*dw < const [ 1+ Z 2nk pntl
RS

n=1

Hence ¢! € C7~¢ where v = —log p/(2log2) — s/2. That is, ® € C7~¢. ad
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ORTHOGONALITY OF SIEVED RANDOM WALK POLYNOMIALS
FROM A NONSIEVED ANALOGUE*

BLAISE DESESAT

Abstract. The continuous component of the orthogonality relation for sieved random walk
polynomials is derived in general from the orthogonality relation of another nonsieved random walk
sequence called the companion polynomials. Conditions are stated on the three-term recurrence
relation between the two polynomial sequences for a linear difference equation to hold. Results from
Ismail are used to find the Stieltjes transform of the orthogonality measure of the sieved polynomials.
The linear difference equation allows for the Stieltjes transform to be inverted. The theory is applied
to the sieved associated ultraspherical polynomials, and in general to random walk polynomials with
linear birth and death rates of 3, = c¢n + a and 6, = cn + b, respectively.

Key words. associated ultraspherical polynomials, birth and death process, companion poly-
nomials, orthogonal polynomials, random walk polynomials, sieved polynomials, Stieltjes transform

AMS subject classification. 33

PII. S0036141096298436

1. Introduction. In this paper we will study sieved orthogonal polynomials and
derive their orthogonality from a nonsieved random walk analogue. Random walk
polynomials arise from a special stationary Markov process known as a birth and
death process (BDP). Here the state space {X(t) : t > 0} is the set of nonnegative
integers. The transition probabilities P, ,(¢) are the probabilities that the system
goes from state m to state n in time ¢. The transition probabilities satisfy

Pn,nJrl(t) = ﬁnt + O(t)7
Ppp—1(t) = 8,t + o(2),

Pn,n(t) =1-96,t— Bt + O(t)7
o(t) otherwise, as t — 0%.

(1)

The (3, and §,, are called the birth and death rates of the process at state n, and they
satisfy the requirements 3,, > 0, 6,41 > 0 for n > 0, and 6y > 0.
The random walk polynomials of the BDP are defined as

Rfl(.%) = 0, Ro(x) = 1,

an(x) = BTLRTL-‘rl(x) + Dan_l(CC), n >0,

_ ﬁin, D, — b
B + bn B + 6y,
Another set of orthogonal polynomials associated with a BDP is the birth and
death polynomials {Q, (x)}, generated by
Ao+ o —x
Qo(r) =1, Qi) = =0
_xQn(x) = )\nQn-i-l(x) + ,UnQn—l(x) - (>\n + ,Un)Qn(x)v n > 0.

®3) B,
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30, 1996.
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Most of the BDP and their random walk polynomials that have been studied
have birth and death rates as linear functions of n. If 8, = an+ b and 6, = cn +d,
then interpreting the states of the process as populations, “an” and “cn” represent
the growth and decline of the population due to its current size, while “b” and “d”
represent external forces.

Given a random walk sequence of polynomials, we may define the sieved random
walk polynomials. Charris and Ismail in [6, 7] outlined this process and defined the
sieved random walk polynomials of the first and second kinds in general. An original
random walk polynomial sequence {R,(z)} is given, defined by the recursion (2).
Next, another random walk sequence {5, (x)}, called the dual sequence, is defined by
the recursion

S,l(l') =0, SO(x) =1,

4
) xSp(z) = DpSpt1(x) + BpSn—1(x), n>0.

The sieved random walk polynomials of the first kind, written r,(z;k), are next
defined by

ro(ka) = 17 Tl(m7k) =,
xrp(x; k) = dp—1rnp1(x; k) + b1 (23 k), n >0,

1
bn:dn:§ifn+17émk,
bmk—1 = Bm—1,dmk—1=Dp_1,m=1,2,....
The sieved random walks of the second kind, s, (z; k), are defined similarly by

. so(z; k) =1, si(z; k) = 2z,
@ xsp(T; k) = bnspta(z; k) + dnsp—1(z; k), n>0.
The first sieved polynomials studied were the sieved analogues of the ultraspher-
ical polynomials C}(z) by Al-Salam, Allaway, and Askey [1, 2]. These were studied
as special limiting cases of the g-continuous ultraspherical polynomials C,, (x; 5]q).
Explicit representations of the sieved polynomials of the first and second kind
were established by Charris and Ismail [6] in terms of the random walk polynomials
R, (z) and the Tchebyshev polynomials of the first and second kinds, T, (xz) and
U, (z), respectively. These formulas allowed Charris and Ismail to find the Stieltjes
transform of the measure of orthogonality of the sieved polynomials of the first kind.
The absolutely continuous component of the measure of orthogonality of the sieved
polynomials of the first and second kind have been related to each other in Ismail [11].

2. Mathematical preliminaries. Given a distribution function p(z), there is
a sequence of polynomials { P, (z)}, where P,(x) is of exact degree n, such that

(8) /_OO P, (z)Pp(x)du(z) = Apbpm, An >0

(see Chihara [8, p. 14]). The sequence {P,(z)} is called an orthogonal polynomial
sequence (OPS).
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Given the distribution function p(x), then the OPS {P,(z)} always satisfies a
three-term recurrence relation

(9) Poi1(z) = (Apx + By)Py(z) — CpPy_1(x), m=1,2,...,

where the coefficients A,,, B,,, C,, are real and such that A,,_1A,C, >0,n=1,2,...,
which is the positivity condition to ensure that the polynomials are orthogonal with
respect to a positive measure [8, p. 19].

From the orthogonality condition (8

\_/

and the three-term recurrence (9), we obtain
n

The vth associated polynomials of P,(z), written P,gv)(:v)7 are defined by the
recursion

IL‘CB

(10)

PY@)y =0, P(x)=1,
PY) (@) = (Anto + Boyo) P (2) — Cpy o P ().

These polynomials are orthogonal by Favard’s theorem [8]. The numerator polyno-
mials of P, (x) are defined as

(11)

(12) Pi(x) = AgPY, (x).
The Stieltjes transform of a distribution function u(t) is defined as the function
> du(t)
13 = btk W24
(13) )= [ 2

for wherever the integral is convergent. Markov’s theorem asserts that when the
support of u(x) is compact, with [£1,71] being the smallest closed interval containing
the support of p(z), then x(z) is an analytic function for z & [£1,m1], and

o PR o AB()
(See Askey and Ismail [3] and Wall [19].) For random walk polynomials, the interval
[€1,m1] is always [—1, 1] (see Karlin and McGregor [13, 14]).

Once the Stieltjes transform of a distribution function is known from Markov’s
theorem, we will want to recover duq(z), the absolutely continuous component of the
measure induced by the distribution function p(z). To this end we employ a corollary
to the Stieltjes inversion formula. If p(z) is of bounded variation on (—oo, 00), then

(15)  du(t) = 5 lim [t i)~ x(t+ i)t € supp (u(t).

(See Widder [20].)

Another method of finding the measure du(x) for an OPS {P,(z)} is given by
the theorem of Nevai: let P,(z) be defined by the recursion (9), and let P,(z) =
P,.(z)/+v/An be the corresponding orthonormal series. If in (9) we have

- _ - v
(16) S {1Baat + [CAA a0 - 2]} < oo
n=0
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for some ~, then
(17) dp(z) = dpa (x) + dps(z),

where dpuq(z) is continuous and a positive measure in (—v,7), supp(dp) = [—7,7]
is the smallest closed interval containing the support of p(z), and ps(z) is a step
function that is constant in (—v,~). Further,

(18) lim sup {dm(x)\/'y? — 2 Pﬁ(x)} _2

n—00 ™

holds almost everywhere (a.e.) in supp(du). (See Nevai [15, Corollary 36, p. 141 and
Theorem 40, p. 143].)

A theorem useful for finding the isolated jumps in the distribution function wu(z)
is due to Shohat and Tamarkin [18, Corollary 26, pp. 45-46]. Let {P,(z)} be the
orthonormal polynomials with respect to the distribution function u(x). Let

(19) p(z)] ™ =Y Pi(x).
n=0

When the corresponding Hamburger moment problem is determined, then p(z) = 0 at
all points of continuity of p(x) and equals the jump of u(x) at a point of discontinuity.

Let o1(x) be the distribution function for the polynomials 7, (x; k) and x1 (z; k) =
f_ll (ZLftt) be the Stieltjes transform for r,(x; k). Charris and Ismail [6] proved the
result

Uk Up—1(2) Sm—1(Tk(x))

(20) Xl(xﬂ k) - n%gnoo Rm(Tk(l‘)) — Rm—2(Tk:(x))’ T ¢ [717 1]7
where
(21) Amk = {D()Dl"'D.m_Q}/{BoBl"-Bm_l}, m > 1.

Further, if oo(x) is the distribution function for s, (x; k), then
(22) doy(z) = (1 — 2?)doy (),

¢ is a constant. (See Ismail [11].)

In the first part of this paper conditions will be developed that allow for the
difference R,,(z) — Rp—2(x) that occur in the denominator of (20) to be expressed as
a linear combination of another random walk polynomial P, (), called the companion
polynomials to R, (z). It will then be shown that if the orthogonality relationship for
the companion polynomials is known, then by using (20), it will be possible to invert
the Stieltjes transform for the sieved polynomials of the first kind of R,,(z) and obtain
its absolutely continuous component of the measure of orthogonality.

In the second section, this general theory will be applied to the random walk
polynomials R, (z;a,b,c) having linear birth and death rates given by 8, = ¢n + q,
6, = cn+b. This will lead to a mixed recursion relation with interesting special cases.
The orthogonality for the sieved polynomials of the first kind of R, (z;a,b,c) will be
discussed after this.

We will use the usual notation for the Gaussian hypergeometric series, writing

(23) oI (a,b;c;2) = o FY < a’cb ;z) = iw i

=0 (C)k k! ’



ORTHOGONALITY OF SIEVED RANDOM WALK POLYNOMIALS 255

where

(24) (a)p=ala+1)---(a+k—-1)=T(a+k)/T(a), k=1,2,...,
a)o = 1.

3. A linear difference relation for sieved polynomials. In this section we
seek a linear representation of the difference R, (z) — R,—_2(z) of a random walk
polynomial in terms of another random walk polynomial. To this end we formulate
the problem as follows. Let R, (x) and its dual S,,(x) be given as defined by (2) and
(4). These are the random walk polynomials whose sieved analogues we are trying to
determine an orthogonality relationship for. We want to know under what conditions
are there constants 0,,, ¢,,, and w,, and another random walk sequence {P,, ()}, such
that

(25) S, (x) =0,PM(x), n>0,

The polynomials P,(x) will be called the companion polynomials to R, (x), and

P,(ll)(x) are the associated polynomials Pév)(x) with parameter v = 1. The com-
panion polynomials are defined recursively by

(27) P
= BnPui1(z) + DpPu_1(z), n>0,

The Stieltjes transform xp(z) for P,(z) will be assumed known, as well as the
absolutely continuous component of the measure of orthogonality, dup(z).

We state the following theorem.

THEOREM 1. If

(28) Bu(1 = Bn1) = Bu(1 = Bny1), n>1,
then (25) and (26) hold, with the constants 0,,, ¢n, and w, given by
E1§2 o 'En
=1 0, = —F—— >1
0 ) n DODl"'Dn717 n-=1,
1 B1By---B,,_
(29) ¢ ==, ¢n:—l 2 1, n>2,
1 D1B1By-+-Bp—1

— 1 1
=D — — =—— , > 1.
Wn, 1<B0 B1D1>¢n n =

Proof. We shall proceed by induction on n. First, note (28) is equivalent to
B.D,1 = B,D,_1, n > 1. The recurrence relation for P7(L1)(a?) is

PY (@) =0,P" () =1,

30 _ _
(30 2PV (@) = Bu1 Py (2) + Do PV (2), n >0,
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Thus Pl(l)(x) = E%x. Let Qn(z) = QnPT(Ll)(x), n >0, Q_1(z) = 0. It is clear that

Qn(x) = Sp(x) for n = 0,1. Multiplying (30) throughout by 6,,, we obtain

an(x) = DnQn-i-l(x) + %Qn—l(m) = DnQn+1(-r) + BnQn—l(x)a n > 1.

Thus, @Q,(x) has the same recursion and initial conditions as the dual polynomials
Sp(x) do. This establishes (25).

When n = 1, (26) becomes R;(z) = ¢1P1(x) + 2wy, which is easily verified as
true. Likewise, using the recursion for Ra(x), Pe(x), and the definitions for ¢o and
wa, along with the fact that By + D7 = 1, it is routine to verify that (26) is true for
n=2.

Now assume (26) is true for n > 2 in general. Multiply both sides of (26) by =z,
then use the recursion relations for R, (x), P,(x), and P,(Ll)(x). This yields

BanJrl(x) + (Dn - Bn72)Rn71(x) - Dn72Rn73($)
(31) _ _ _ S
= $u[BuPoi1(2) + DnPoi1(2)] + 20, [Ba PV () + D PV, ().
Since B, + D,, =1 for n > 0, then D,, — B,,_o = D,,_o — B,, for n > 2. Thus the left
side of (31) becomes By [Rp+1(z) — Rn—1(x)] + Dp—2[Rn—1(x) — Ry—3(z)]. Applying
the induction hypothesis to R,,—1(z) — R,—3(x) with n — n — 1 and simplifying, we
obtain

Bn[Rn+1(-r) - Rn—l(x)] = ¢n§npn+1(x) + ((bnﬁn - ¢n—1Dn—2)Pn—l(x)

32 _ —
(82) + z{w, Bn PV () + (wn Dy — wnlen72)P7(llf)2(‘r)]'

UJ‘W\

To simplify the above, first note that ¢,41 = %gﬁ)m Wnt1 =

oY Bn_1D. oY Bp_1Dy—
¢nDn = %nl_lnd)nflv n>2. But D, = %7 n > 23 S0

2, 1 > 1. Therefore
En 7¢n71Dn72 = Oa

n > 2. Similarly, w, D, — wp_1Dn_2 =0, n > 2. Therefore, (32) simplifies to

n

<

Rn+1($) — Rnfl(il') = ¢n+1pn+1(m) + an+1p7gl)(l').

This is (26) with n — n + 1, so the theorem is proved by induction. |

Once a suitable set of companion polynomials are selected, we may proceed to
find do(z; k), the absolutely continuous component of orthogonality for r,(z; k), the
sieved polynomials of the first kind of R, (x), and the Stieltjes transform xi(x; k) of
this measure.

Spa(m)  _ 0na P (2)/Po(2)
By Theorem 1, Rn(w)_zlzn,z(w) - ¢n+mnp§jl(m)/pn(z)

Theorem 1 for 6,,, ¢, wy, and the values in (21) for a,x, we have, after simplification
and the use of Markov’s theorem,

. Substituting the values in

(33) i GnkSn-1(®) _ Bo xp(z)

n—oo Ry(x) — Rp—2(x) By 1 — ( 1 1 )
D, '\ B, BoDs zxp(z)

x & [-1,1]. Since xz € [-1,1] & Ty (z) € [-1,1], replacing x by Tk(z) in the above,
and using (20), we have the following theorem.
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THEOREM 2.
B k) = 20 e e eg -1
A P A 1 ’ o
o+ Ty (BO - BD) Ti()xp (Te(x))

To use the Stieltjes inversion formula on x1(z; k) to recover du(x; k), it is first
necessary to mention a special case of a theorem due to Geronimo and Van Assche.
If po is a probability measure with Stieltjes transform x(z, o) and p is another
measure whose Stieltjes transform is given by x(z, u) = Ug—1(2)x(Tk(2), po), where
Ty (z) and Ug(x) are the Tchebyshev polynomials of the first and second kind, then
the absolutely continuous components of the measures 1 and pg satisfy the relation
dp(x) = |Ug—1(2)|dpo(Txk(x)). (See Geronimo and Van Assche [10].)

If we let

X(.p) = lim - dokSn 1)

s Rn(lﬂ) — Rn_Q(I’)7 x g [_17 1]7

be the Stieltjes transform for some measure p, then xi(x; k) = Up—1(x)x(Tk(x), p).
Using (15), the corollary to the Stieltjes inversion formula, then (33) becomes

(35) dp(z) = By dup ()

S ByDy |1 - /1 1
— +Bg| — —=— | 2 x
B O(BO BOD1> xp(z)

5, w€(—1,1).

Here the Stieltjes transform for the companion polynomials,

1
xp(z) =p.v. /_1 dgi(?, z € (—1,1),

is understood to be a Cauchy principal value integral. Now applying the theorem of
Geronimo and Van Assche to (35), we obtain the following theorem.

THEOREM 3.
B _ T
(36) d0'1<$;k?) — i ‘Uk 1<x)|d/'6P( k(x» 5 c (_17 1).
P S B (5 - ) T o)
— _— - = T T
D, 0 By BoD: E\T)XP(LEk

It is always possible to find companion polynomials P, (z) such that the formula
B,D,_ 1 = B,D,1,n > 1, is satisfied. Choose B,, = D,,_; and D,, = B,,_;. The
requisite equation (28) is satisfied, and so is the random walk condition B,, + D,, = 1,
n > 1 for P,(x). These are called the natural companion polynomials and are defined
as

:EPn(x) :anlanrl(x)"’_ananfl(x)a n>1,

7 Pi(z)=0, Pyz)=1, Pi(z)=—.

Here By and Dy need not be specified, since Dy plays no role as P_;(z) = 0. With
this selection for P,(z), we see P,gl)(w) = S,(z). The constants 6, ¢,, and w, in
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Theorem 1 become

(38) $1 = —

! (1 1) (1 1) >
W1 = — el B Wp = anp, el B n - z.
! BO Bo F Bo

Theorem 1 becomes

(39)  Ru(2) — Ru_o(z) = ank [Pn(x) + (1 _ 1) xp,g”l(x)] L n>2

0

The formulas for the Stieltjes transform and measure of orthogonality for r,(z;k)
become

(40) xa(z; k)

BoUs-1(2)xp(Ti(x)) z g [~1,1]
) s ) b

1+ (Bo — )Tk (x)xp(Tk(x))
(41) doy (z; k) = BolUs—1(@)ldpp(Ti(x) (—1,1).
1+ (Bo — 1)Tk(x)xp(Tk(x))[?

4. Orthogonality of the associated ultraspherical polynomials. In this
section we will study the random walk polynomials R, (z;a,b,c), or simply R, (x)
when the dependence on the parameters is not necessary to state, with linear birth
and death rates given by (3, = cn + a, 6, = cn + b. This will give us the background
to then select a companion random walk polynomial sequence to R, (x) and to study
the sieved analogues in the next section.

These polynomials satisfy the recursion

R,l(x) = 0, R()(l’) = 1,

(42) (en+a)Rpi1(z) = 2en+a+b)zRy(x) — (en+b)Ry—1(z), n>0.

The case of ¢ = 0 is seen to be the Tchebyshev polynomials R,(z) =
(g)"/2U7L(2“j%x). Dispensing with this case, we may divide the recursion (42) by

¢, replace a by £ and b by %, thereby scaling ¢ to 1. This leaves the recursion to the
simplified form

(43) (n+a)Ryy1(x;a,b) = 2n+a+b)xR,(z;a,b) — (n+b)Rp_1(x;a,b), n>0.

These are seen to be the associated ultraspherical polynomials C’y(;’) (x;8) =
R, (z;7+1,28+7~—1). The ultraspherical polynomials are C)}(x) = R, (x;1,2A—1).
The corresponding birth and death polynomials when 3, = n+a+c+1, 6, = n+c,
n > 0, are the associated Laguerre polynomials L% (z;c). These have been studied in
Askey and Wimp [4] and Ismail, Letessier, and Valent [12].
The positivity condition on the measure for R, (z) is found from (43) to be

2n+a+b)(2n+a+b—2)(n+0b)
(n+a)32n+a-2)

>0, n=12,....

The intersection of these inequalities for n = 1,2,..., is found to be a > 1,b > —1.
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Let G(z,t) = Y.7  Rn(x;a,b)t" be the generating function for the polynomials
R, (z;a,b). Note that G(z,0) = 1. Multiplying (43) by "*! and summing from n = 0
to 0o, we obtain the differential equation

OG(x,t
- )t~ 32D - (1)) - )G ) + (a1,

Here «, 3 are the roots of the equation ¢ — 2tx +1 = 0, with || < |8]. We note
that o + 8 = 2z, af = 1, and |a| = |B| & |z| < 1. Also, p,q are the roots of
—(1+b)t2+ (a+b)xt+(1—a) =0. We have p+q = %x, pq = Z;% Let A=1-—a,
B = aT_b — 1. Solving the above differential equation, we obtain

t
G(J},t) = (a - 1)tA(1 — 2zt + t2)B / qu*l(l — zu + u2)7371du'
0

For the integral to converge, we must have A < 0, or a > 1, which is implied from the
positivity condition.

We may use the method of Darboux (see Olver [16, section 8.9]) to obtain asymp-
totic estimates for R, (x). Analyzing = ¢ [—1,1] first, we find a comparison function
to be

s B . o —B-1
i (1 2) e -t (3] [0 (-

B # 0,1,.... The above integral is a Hadamard integral (see Askey and Ismail [3,
Chapter 5]). Using the binomial theorem for (1 — L)% =% % 3—2, and Stir-
ling’s asymptotic estimate (_g)"a_" ~ F‘Z‘:;)n_B_l
mate

Ru(z) ~ (a — 1)a (1 _ g)B r?—_;) LB /Oa A - g)*B* (1 _ Z>_B_1 du,

x € [-1,1].

, we obtain the asymptotic esti-

To evaluate the above integral, we may use the binomial theorem on the factor
(1- %)’Bil inside the integral, reverse order of summation and integration, and
use the definition of beta integrals to obtain after simplification the result

Ry (z;a,b) ~ RAON <1 B a)“z”—l

a+b
(%) g
—b b
(44) x oFy [a—1, L; i; @ Ofnn(b*tl)/?7
2 2 B
n— oo,z & [—1,1].
There is no need to separately consider the case where B = 0,1,2, ..., since the factor
I'(—B) has cancelled.
For z € (—1,1), |a] = |8]. Due to the two singularities of the generating function

G(z,t) that are equidistant from the origin, a comparison function to use in the
method of Darboux in this case is

(a—1)a? (1 - g)B /Oa u= A1 (1 - g)_B_l (1 - Z) Y

+ complex conjugate.



260 BLAISE DESESA

Letting « = cosf, a = €, f = e~%, we obtain the asymptotic estimate

I'(a)
)

o (a’a =1 ‘1;;6219)

Rn(x;a,b) ~ 2 |1 _ 62i9|(a;b)_1

b—a

(45) X n(7%) cos(—nb + ¢),

n—oo, € (—11),

where ¢ = arg[(1 — e2i9)(aT4’)_1 o F (‘IT_zﬂ a—1; aT'H’; e?)].
To obtain the asymptotics at x = 1, we find the differential equation of the
generating function G(z,t) of R,(z) at z =1 to be
0G(1,t
Kt — 1)2% G2+ (@t bt +1—aG(L ) + (a—1).

Solving this we obtain
G(1,t) = (a— 1)t' 721 — )22 /Ot w21 —u)’"%du, a> 1.
A comparison function in the method of Darboux is
(a—1)(1—t)* b2 /1 u2(1 —u)’"%u, b—a#-1,-2,....
0

Evaluating the above Hadamard integral and using the binomial theorem and Stir-
ling’s asymptotic estimate, we obtain after simplification

1

F —b —1la1 —a+b+1
F(_a+b+2)2 1(a , 5 a; )TL )

R (1) ~

(46) n — oo, b—a#-1,-2,....
Since the recursion for R, () is symmetric, then R,,(—1) = (—1)"R,,(1), and therefore
this case need not be considered separately (Chihara [8, p. 21]).

The numerator polynomials are defined in terms of the associated polynomials
with parameter v = 1. We see that Rg)(az;a, b) = R,(x;a + 1,0+ 1). Therefore, by
(44), we obtain the asymptotic estimate

a—b_l
I 1 )
R (w0,8) ~ — 0t D) a)

vt (122
r(“QMle)( b

—-b b
X o F} (a, a 5 ; a—2&— +1; g) a_”n(b_a)/z,

(47) n—oo, x¢&[-1,1].

The Stieltjes transform of the distribution function for the polynomials R, (x; a,b)
can be obtained next. Let the orthogonality be written as

1
/ R, (z;a,b) Ry, (2; a,b)du(z) = A,
-1
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Let x(z) = _11 dfﬁ?,x ¢ [—1,1], be the Stieltjes transform. Applying Markov’s

theorem to asymptotic estimates (44) and (47), we obtain after simplification

—b b
o (a,a;aJr +1.o¢)

B 2 ' 9 ]
(48) x(z) =2« . 1 @b atb a)’ xz & [-1,1].
2 l(a_ ) 2 ) 2 ,/6)

Now that the asymptotic estimates for R, (z;a,b) are known for x € (—1,1),
we may use the theorem of Nevai to obtain du(z), the continuous component of the
measure of orthogonality. The hypotheses of the theorem are seen to be satisfied
by a routine order estimation of the recursion coefficients. Using formula (10) and
Stirling’s formula, we have

a+b (n4+a) ((b+1), a+b (a) b

—a

Letting & = cos #, we then have v/1 — 22 = |sinf)|, and |1 —e?"?| = 2|sin|. Therefore,
using (45) and (49), we can write

. 2 1 An
dﬂ(l') = h"l:LIl_}SOl})p ; /71 — x2 R% (1_7 a, b)

2(a+b>
1 a+b 2 a—b a+b N2
_ 721770, . 9b7a+1 F -1 . . 240 d
- b Tr oY “<a "o T 0 “
(50)

x € (=1,1).

A partial analysis of mass points in the distribution function p(x) may be obtained
~ 2
using (19). From asymptotic estimates (46) and (49), we have R2(1) = RK—(I) =

On~*t+2. Therefore, if a — b > 3, then S°°  R2(1) is divergent, and pu(x) does not
have a mass point at x = 1. The same analysis holds at x = —1.
The dual polynomials are defined by the recursion

(51)  (n+a+b)xSp(z;a,b) = (n+b)Spt1(z;a,b) + (n+a)Sp—1(x;a,b),

with the usual initial conditions. By showing that the same recurrence and initial
conditions are satisfied, we can make the following identifications:

(52) Sp(x: a,b) = Ry(2: b,a) = RV (z:b—1,a —1).

From asymptotic formula (44), we therefore have

R ( b— b
Sn(x;a,b) ~ <1 0‘) # o F) é) 1, a a+b a) a~pla=b)/2,
r

a+b 27 278
2

(53)
n—oo, x¢[—1,1].
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5. The sieved associated ultraspherical polynomials. We now have the
background material to study the companion polynomials and the various sieved poly-
nomials of R, (z). Let r,(z; k) be the sieved polynomials of the first kind of R, (x).
From the birth and death rates 8, = n+ a, 6, = n + b of R,(x), we identify the
coefficients

n+a n+b

4 B,= ————, y = ————.
(54) 2n+a+b 2n+a+b

Therefore, the coefficients a,,;, in (21) are given by

b)m— 2T
Bns @) 4
(@)n  T(b)

Let o1(x; k) be the distribution function that the polynomials r,(z; k) are or-
thogonal with respect to, and let x 1(x;k) be the Stieltjes transform of oy(x;k).
Asymptotic estimates (44), (53), and (55) allow us to write

(55) amr = (a+b+2m — 2)

b—a a+b «

CwyoFy (p—1,2 2002

lim Ak Sm—1(x; a,b) 2 l_g(b )2 1( 2 2 ﬂ)
m—oo Ry, (z;a,b) — Ryp_a2(z;0,0) B —a 8 a—b a+b o\’
2 (a—1, 9 ; 9 ;E

x & [-1,1].

Now let z be replaced everywhere by Ty (x), the Tchebyshev polynomial of the
first kind. Then «, § are replaced by

(56) ak,ﬁk:Tk(m):I:\/T,?(x)—l.

The statement = ¢ [—1,1] becomes T (z) & [—1,1], which is identical to ¢ [—1,1].
By (20) we have

b—a a+b «
(b—a) 2F1 (b—l" ; k)

2 72 B
a=b a+b ay ’
27 2 "B

gy 2 _ %
Xl(x’k)iﬁk—ak Uk-1(@) <1 ﬁk)

Fila—1,
(57) ’ 1(
x & [-1,1].

5.1. The companion polynomials. We next study the companion polyno-
mials for the R, (x;a,b) defined by the recursion zP,(v;a,b) = BpPpy1(z;a,b) +
D, P,_1(z;a,b), with the usual initial conditions, and where

n+a — n+b—2

En:— n
(58) 2n+a+b—2

=—— n>0.
n+a+b—2 -

We see the relation Enbn+1 = BpD,—1 holds for n > 1, so the P,(z) are compan-

ion polynomials to R, (z), but these are not the natural companion polynomials of

R, (z). The above companion polynomials were selected since they will furnish some

interesting results. We first note the identities

P, (z;a,b) = Ry (z,a,b— 2),

(59) PW(z:a,b) = Ry(z;a+1,b—1).
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From (29), we identify the coefficients 6,,, ¢, w, as

(60)
(a+1),
)

Using identities (59) and (60), formulas (25) and (26) become

a+b+2(n—-1) " _l—a a+b+2(n—1)

On = b—1 ’ a b—1 ’

On = n > 1.

Dn
(61) Sn(x;a,b) = ~——— Rp(z;a+1,b—1), n>0,

R, (z;a,b) — Ry—o(x;a,b) = %2(1”_1),

(62)

l1—a

X [Rn(x;a,b—2)+ an_l(x;a—l—l,b—l)}, n > 1.

a

In terms of the associated ultraspherical polynomials, formula (62) becomes the
mixed recursion relation

CO(z;8) — Cy(z; B) =

2(n+0+~v—1)
28+v—2

(63) [cmx; B-1) - 2% O (0 1)] .

y+1 "

The case of v = 0 are the ultraspherical polynomials, written C(z), where X is
replacing . Formula (63) reduces to

)~ () = L ),
A—1

a known result. (See Rainville [17, p. 283, eq. (39)].) Charris and Ismail [7] use this
relation, along with the known weight function for the ultraspherical polynomials,
to invert the Stieltjes transform for the sieved ultraspherical polynomials of the first
kind, and thereby obtain the orthogonality relation for these polynomials.

The derivation of formula (63) was done originally in DeSesa [9, pp. 139-142].
First an expression for ct) (z; 8) in terms of the Legendre functions of the first and
second kinds was used. (See Bustoz and Ismail [5].) Then properties of the Legen-
dre functions established (63). This was used to invert the Stieltjes transform for
the sieved associated ultraspherical polynomials of the first kind. (See DeSesa [9,
Chapter 4].)

The Stieltjes transform x p(2) for the companion polynomials is easily obtained by
making the substitution b — b — 2 in formula (48), as justified by identity (59). Sim-
ilarly, du,(x), the absolutely continuous component for the measure of orthogonality
of the companion polynomials, is found by using the same substitution in (50).

5.2. The sieved polynomials of the first kind. For r,(x; k), the sieved poly-
nomials of the first kind, where B,, and D,, are given by (54), we note first

a — a — b—1
64 By = By= —— D = .
(64) O T a5t O urb—2’ YT uxh
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Using (64) and the substitution b — b — 2 in (48) for xp(z) in Theorem 2, formula
(34), we obtain a second expression for xi(x; k) given by

2(b— D)Ug—1(z)apFy

65 k) = —1,1
(65) X@k) = TR, 120 — aTh@er S ELI b
where
a—>b a—>b
a, +1 a—1,— +1
Fy =9F 2 5% , Fy =9 2 ;% s
a+b B aer—l B
2 2

and ag, Oy are given by (56). The equivalence of (65) and (57) may be established
more directly from a sequence of Kummer transformations and contiguous parameter
identities of the Gaussian hypergeometric function.
To obtain the formula for doy(x; k), substitute the expressions found for dyp(z)
and yp(x) into Theorem 3, formula (36). Note that when z is replaced by T (x) for
€ (—1,1), 8 = cos~!(x) is replaced by kf, ap = ¢™*? and B, = =%, This yields

(66)
a+b
2b—¢ r ( 2 ) b—a—1
—(a+b)(b—1) —~F |sinkd|" "7 |Ug-1(2)]
doi(x; k) = T [(@)T(b) dx
' [(a+b—2)2F;5+2[(a+b)(b—2) — (a+b—2)2Tk(z)ek? Fy|2
T = cosf,
where
a—l,a_b—i—l ' a,aT_b—i— ,
F3=2F a+b_1 ;2 By =8 ath ;e
2 2
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FRAMES CONTAINING A RIESZ BASIS AND PRESERVATION
OF THIS PROPERTY UNDER PERTURBATIONS*

PETER G. CASAZZA! AND OLE CHRISTENSEN?

Abstract. Aldroubi has shown how one can construct any frame {g;}$°, starting with one
frame {f;}32,,using a bounded operator U on the space of square summable sequences 62(N). ‘We
study the overcompleteness of the frames in terms of properties of U. We also discuss perturbation
of frames in the sense that two frames are “close” if a certain operator is compact. In this way we
obtain an equivalence relation with the property that frames in the same equivalence class have the
same overcompleteness. On the other hand we show that perturbation in the Paley—Wiener sense
does not have this property.

Finally we construct a frame which is norm bounded below but which does not contain a Riesz
basis. The construction is based on the delicate difference between the unconditional convergence
of the frame representation and the fact that a convergent series in the frame elements need not
converge unconditionally.

Key words. frames, Riesz bases, perturbations, overcompleteness
AMS subject classifications. 42C99, 46C99

PII. S0036141095294250

1. Introduction. The introduction of frames for a Hilbert space H goes back
to the paper [9] from 1952, where they are used in nonharmonic Fourier analysis. A
frame is a family {f;}:cr of elements in H which can be considered as an “overcom-
plete basis”: every element in H can be written as a linear combination of the frame
elements f;, with square integrable coefficients, which do not need to be unique. A
natural theoretical question (which is also important for applications, e.g., representa-
tion of an operator using a basis) is how far frames are away from bases, i.e., one may
ask questions like (1) does a frame contain a Riesz basis? (2) which conditions imply
that a frame consists of a Riesz basis plus finitely many elements? (3) what happens
with the overcompleteness if the frame elements are perturbed? The reason for the
interest in Riesz bases and not just bases is that frames and Riesz bases are closely
related: a Riesz bases is just a frame {f;}5°,, where the elements are w-independent,
ie.,

Zcifizo, {Ci ?21652(I)Z>Ci:0 Viel.

icl
Some answers have been found by Holub [10], who concentrates on the second ques-
tion. Here we go one step further, in that we are mainly interested in frames which
just contain a Riesz basis. For such frames one defines the excess as the number of
elements one should take away to obtain a Riesz basis.

In the first part of the paper we apply a result of Aldroubi [1], explaining how

one can map a frame onto another using a bounded operator U on ¢2. Our results
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concern the relation between the frames involved and properties of U. Independent
of that we construct a norm-bounded frame not containing a Riesz basis.

In section 3 we concentrate on the third question. We introduce the concept “com-
pact perturbation.” This leads to an equivalence relation on the set of frames, with
the property that frames in the same equivalence class have the same overcomplete-
ness properties; this means that if a frame contains a Riesz basis then all members in
the class contain a Riesz basis, and all those frames have the same excess.

Finally we show that perturbation in the Paley—Wiener sense [7] does not have
this pleasant property.

2. Frames containing a Riesz basis. Let H be a separable Hilbert space. A
family {f;}icr is called a frame for H if

A, B> 0: A[f|IP <YK f)IP < BIFIP vien.

icl

A and B are called frame bounds. The frame is tight if we can choose A = B. A
Riesz basis is a family of elements which is the image of an orthonormal basis by a
bounded invertible operator. Frequently we will use an equivalent characterization
[16]: {fi}ier is a Riesz basis if there exist numbers A, B > 0 such that

(1) AN el < X T<BYlaf

for all finite sequences {c;}.

Also, a basis {f;}icr is a Riesz basis if and only if it is unconditional (meaning
that if > ¢; f; converges for some coeflicients {¢;}, then it actually converges uncon-
ditionally) and 0 < inf; || f;|| < sup, ||fi|] < 0.

There is a close connection between frames and Riesz bases:

{fi}tier is a Riesz basis

{fi}ier is a frame and Zcifi =0,{citici€P(I)=c;=0 Vi
il

In words: a Riesz basis is a frame, where the elements are w-independent. If {f;}icr
is a Riesz basis, then the numbers A, B appearing in (1) are actually frame bounds.
If {fi}icr is a frame (or if only the upper frame condition is satisfied) then we define
the preframe operator as an operator from the space of square summable sequences
with index set [ into H:

T:03(I) —H, T{c}:= Zcifi.

il
The operator T' is bounded. Composing T with its adjoint
T* :H — (D), T*f ={(f, fi)}ier,

we get the frame operator

S=TT*:H—H, Sf=> (ff)f:

icl
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which is a bounded and invertible operator. This immediately leads to the frame
decomposition; every f € H can be written as

F=Y(F5 ki,

iel

where the series converges unconditionally. So a frame has a property similar to a
basis: every element in H can be written as a linear combination of the frame elements.
For more information about basic properties of frames we refer to the original paper
[9] and the research tutorial [12]. The main difference between a frame {f;}ic; and
a basis is that a frame can be overcomplete, so it might happen that f € H has
a representation f = 3., c;f; for some coefficients ¢; which are different from the
frame coefficients (f,S~1f;). In applications one might wish not to have “too much
redundancy.” In that spirit Holub [10] discusses near-Riesz bases, i.e., frames {f;}ier
consisting of a Riesz basis { f; }scr—o plus finitely many elements { f; };c,. The number
of elements in o is called the excess. Let us denote the kernel of the operator T by
Nr. If {f;}ier is a frame, then

{fi}icr is a near-Riesz basis,
N7 has finite dimension,

{fi}ier is unconditional.

The first of the above bi-implications is due to Holub [10], who also proves the second
under the assumption that the frame is norm bounded below. The generalization
above is proved by the authors in [4]. If the conditions above are satisfied, then the
excess is equal to dim(Np).

If dim(Nr) = oo, two things can happen: {f;}icr consists of a Riesz basis plus
infinitely many elements (in which case we will say that { f;};c; has infinite excess) or
{fi}ier does not contains a Riesz basis at all. In the present paper we concentrate on
frames which contain a Riesz basis. Every frame can be mapped onto such a frame
(in fact, onto an arbitrary frame) using a construction of Aldroubi [1], which we now
shortly describe.

For convenience, we will index our frames by the natural numbers. Let {f;}52; be
a frame and U : ¢*(N) — (?(N) a bounded operator. Let {u; ;}; jen be the matrix
for U with respect to some basis. Define the family {g;}32, € H by

(2) gi :Zui,jfj-
j=1
By an abuse of notation we will sometimes write {g;}5°, = U{f;}2;. A result of
Aldroubi (differently formulated) states that
{g:}:2; is a frame < Iy > 0: |[UT*f|| > ~v- ||T*f|| Vf € H.

It is important that every frame {g;}5°, can be generated in this way; i.e., given
the frame {g;}32, we just have to find the operator U mapping {f;}5°; to {g:}52;.

i=1 i=1
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In connection with Aldroubi’s construction there are (at least) two natural questions
related to Holub’s work: how is the excess of {g;}32; related to that of {f;}22;, and
which conditions imply that {g;}$2, actually is a Riesz basis? We shall give answers
to both questions in this section.

The definition of {g;}?2; immediately shows that

Yo Ny =U{{fi, /)} VfeH;

this is true whether or not {g;}72; builds a frame. The formula leads to an expression
for the preframe operator associated with {g;}3°;. We let U7 denote the transpose of
U and U be the operator corresponding to the matrix where all entries in the matrix
of U are complex conjugated. It is easy to prove that

S g = TUT (e}, Vie) € A(N).
=1

So if {g;}$2, contains a Riesz basis, then its excess is equal to dim(Npyr). For the
calculation of this number we need a lemma, the proof of which we leave to the reader.
Corresponding to an operator V we denote its range by Ry .

LEMMA 2.1. Let X,Y be vector spaces and 'V : X — Y a linear mapping. Given
a subspace Z CY, define V-1(Z):={x € X | Vax € Z}. Then

dim(V=1(2)) = dim(Z N Ry) + dim(Ny).

THEOREM 2.2. dim(Npyr) = dim(Ryr N Nr) + dim(R).
Proof. Theorem 2.2 is an easy consequence of Lemma 2.1 and the calculation

{{ei}i2y | TU {ei}2) = 0F = {{ei}2y | UT{ei}2y € Npy = (UT) "' (Np). O

So if {g;}5°, actually is a frame containing a Riesz basis, then Theorem 2.2 gives
a recipe for calculation of the excess. In particular, if {f;}$2; is a near-Riesz basis
and Ry has finite codimension, then {g;}52, is also a near-Riesz basis. Observe that
in the special case where {f;}52, is a Riesz basis, the excess of {g;}$2, is equal to
dim(Ry) = dim(Ng-).

Ezample 1. Let {f;}52, = {e;}$2; be an orthonormal basis for H and define

1 .
g1 = eq, gi = €1+ PR > 2.

According to (2), we have

which certainly defines a bounded operator from ¢?(N) into ¢2(N). Since {f;}5°, is
an orthonormal basis, Ry~ = (2(N), so {g;}32; is a frame if and only if

Fy > 00 |[U{e} 2]l 2 v e}l Y{e}zy € 2(N).
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But
el = | (e + geeat 3
C; =11l = C1,C1 202702 303,...
Cy C3 1 0o 0o
> [[(erexsezyes )l = [ (0,5 50 ) | 2 SIHediEall Hediz, € V).
Now, since
1 1 0
0 1/2 1 0
Us=]10 0 1/3 1 0 ,

Ny- = span{(1, -1, 3;, 5t -..)}. We conclude that {g;}22; has excess one.

Concerning Riesz bases we have another result, which can be proved by the in-
terested reader.

PROPOSITION 2.3. {g;}5°, s a Riesz basis < U : Ry~ — (%(N) is surjective.

More generally one may wish that the frame at least contain a Riesz basis. As
shown in [6], this is the case for a Riesz frame, which is a frame with the property
that every subfamily is a frame for its closed linear span, with a common lower bound
(see [4] for an extension.)

It is easy to construct a frame which does not contain a Riesz basis if one allows
a subsequence of the frame elements to converge to 0 in norm. We now present an
example showing that the same can be the case for a frame which is norm bounded
below. Our approach is complementary to a work by Seip [14], who proves that there
exist frames of complex exponentials for L?(—m, 7) which do not contain a Riesz basis.
While Seip relies on the theory for sampling and interpolation our approach is more
elementary, just using functional analysis. Furthermore our construction puts focus
on a different point, namely the difference between convergence and unconditional
convergence of an expansion in the frame elements.

PROPOSITION 2.4. There exists a tight frame for H which is norm bounded below
but which does not contain a Riesz basis.

The proof needs several lemmas, so let us shortly explain the basic idea. As
we have seen, ), ; c;f; converges unconditionally for every set of frame coefficients
{ci}ier. But nothing guarantees that convergence of ), ; ¢; f; implies unconditional
convergence for general coefficients {¢; };c;. Our proof consists of a construction of a
frame where no total subset is unconditional, and hence not a Riesz basis. Technically
the first step is to decompose H into a direct sum of finite dimensional subspaces of
increasing dimension. The idea behind the proof might be useful in other situations
as well.

LEMMA 2.5. Let {e;}_; be an orthonormal basis for a finite dimensional space
H,,. Define

1 n .
fj:ej_ﬁz;ei fOT'le,...,TL,
1=

1 n
fn+1 - = Zei-
\/ﬁ =1
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Then
n+1

DKL= AP Y € Ha

j=1

Proof. Given f € H,, write f = >"1" | aje;, a; = (f,e;). If we let P denote the
orthogonal projection onto the unit vector ﬁ 2?21 e;, then

TR
=1 =1

Therefore

2
i = izl g e

Also

n n 2

i€i — aj Zei
2
Z (. fi) 2

11 = P)fII* =If - PfII* =

2
n n
Zj:l aj
Gy — ———— | €&
n

i=1

n
jl]

n

s

i=1

a; —

Putting the two results together we obtain
n+1

LI = 1IPFIP + (T = P)fII = Z|fvfz 7

and the proof is complete. a
Given a sequence {g;}icr C H, its unconditional basis constant is defined as the

number
sup { Z 0iCigi Z Cigi

iel iel

As shown in [15], a total family {g; }ies consisting of nonzero elements is an uncondi-
tional basis for H if and only if it has finite unconditional basis constant.

LEMMA 2.6. Define {f1, ..., fn+1} asin Lemma 2.5. Any subset of { f1, fa, .-y frn+1}
which spans H,, has unconditional basis constant greater than or equal to /n —1—1.

Proof. Since Y., f; = 0, any subset of {f1,..., fn41} which spans H,, must
contain n — 1 elements from {f1, ..., fn} plus fn4+1. By the symmetric construction it
is enough to consider the family {fi,..., fn—1, fnt+1}- We have

=1and g; = 1 Vl}.

n—1 n

n—1 n—1
Zfi = Zei_ n Zei
=1 =1 =1
-1
n—1_% n—1
= (1_ n )Zei_ €En
i=1
182 n-1
= | €; — €n
n = n
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Now consider || Z::ll(—l)”fiﬂ; if n is odd this number is equal to || Z?:_ll(—l)”eiH =
vn — 1, and if n is even it is equal to

n—1 n n—1 n
. 1 , 1 Vn
e -~ e e~ =Y el zvi—1- Y > vn—1-1.
That is, in all cases,
n—1

S (=Dl = Vn—1-1.

i=1

Combining this with the norm estimate || Z?;ll i|| <1, it follows that the uncondi-
tional basis constant of {f1, ..., fn—1} is greater than or equal to v/n — 1—1, so clearly
the same is true for {f1,..., fn—1, fnt1}- 0

Now we are ready to do the construction for Proposition 2.4. Let {e;}2; be an
orthonormal basis for H and define

€(n—1)n l)n 5 E€(n—1)n l)n

+17 +n}

H, = span{ew;m FPIRS

So Hy = span{e1}, Ho = span{es, ez}, Hs = spanfey, €5, €6}, .... By construction,

Thatis, g E H < g = o, gnsgn € Hn, and ||g]|?> =D 07, ||gnl>. We refer to [13]
for details about such decompositions. For each space H,, we construct the sequence

{fn}n+1 as in Lemma 2.5, starting with the orthonormal basis {e [EETIENPPERS e<n,;1>n,+n}.

Specifically, given n € N,

1
n .
fir=em- TEIES D E e('rL;1)7L+j , 1 <1< n,

LEMMA 2.7. {ff};jll);fil is a frame for H, with bounds A = B = 1.
Proof. Write g € H as g =3 > | gn, gn € Hn. Given n € N it is clear that

(9, 1y = (gn, fI)y for i =1,....,n+ 1.

From this calculation it follows that

oo n+1l oo n+1
SN Ka P =D Hgn FP ZII%IIQ—IIQH2
n=1 =1 n=1 i=1
where we have used Lemma 2.5. ]
LEMMA 2.8. No subsequence of {ff}?i1l,7fi1 is a Riesz basis for H.

Proof. Any subsequence of {f'}/*:>*| which spans M must contain n elements

from { ff}?jll and so by Lemma 2.6, its unconditional basis constant is greater than
or equal to v/n — 1—1 for every n. That is, the unconditional basis constant is infinite,
hence the subsequence cannot be an unconditional basis for H. ]
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Lemmas 2.7 and 2.8 prove Proposition 2.4. It would be interesting to determine
whether Proposition 2.4 still holds if one only considers classes of frames with a special
structure, for example Weyl-Heisenberg frames, wavelet frames, or frames consisting
of translates of a single function.

Remark. Corresponding to a subfamily {f;}7; of a frame {f;}5°,, we define the
frame operator by

Shp Span{fz}l 1 span{fl i=1» nf Z fafz

The orthogonal projection of H onto span{f;}? ; is given by

Pof = (£, S i) fi-

i=1
According to [5, 6], we say that the projection method works if
<faSn_1fi> - <f7S_1fi> for n — oo vf € Ha Vi e N.

The “block structure” of the frame { fl"}?:ﬁl:il constructed here shows that the
projection method can be used. As shown in [6] the method can also be used for
every Riesz basis. The more general questions whether a frame contains a Riesz basis
and whether the projection method works do not seem to be strongly related.

3. Excess preserving perturbation. At several places in the following we
need results for perturbation of frames and Riesz bases. We denote the frames by
{fi}221,{9:}2,, usually with the convention that {f;}5°, is the frame we begin with,
and {g;}$2, is the perturbed family. Common to all these results is that they can be
formulated using the perturbation operator K mapping a sequence {¢;} of numbers to
> cilfi — gi)-

THEOREM 3.1. Let {f;}321,{9:}52, C H.

(a) If {fl}l L isa fmme for H and K is compact as an operator from €*(N) into
H, then {g;}32, is a frame for its closed linear span.

(b) Suppose {fi}2, is a frame for H with bounds A, B. If there exist numbers

A, >0 such tharh\—kﬁ <1 and
Hzci(fi - 9i) ‘ <A Hzcifi —|—,u\/m

for all finite sequences {c;}, then {g;}32, is a frame for H with bounds
Al - ()\+ﬁ)) ,B(1+ X+ f)

(c) If {fi}32, is a Riesz basis for span{f;}°, and the perturbation condition in
(b) is satisfied, then {g;}32, s a Riesz basis for span{g;}5°,.

For the proofs we refer to [6, 7, 8]. As an easy consequence of (a) we have the
following.

COROLLARY 3.2. If {f;}22, is a frame and 0 C N is finite, then {f;}ien—o is a
frame for SPAT f; bien o

Our next result connects Theorem 3.1 with the question about overcompleteness
of the involved frames.

THEOREM 3.3. Suppose that {f;}32, is a frame containing a Riesz basis, that
{gi}o2, is total, and that K is compact as a mapping from 1*(N) into H. Then
{gz}l 1 18 a frame for H containing a Riesz basis, and the frames {fi}52, and {¢:}32,
have the same excess.
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Proof. First assume that {f;}52, has finite excess equal to n. By changing the
index set we may write {f;}72, = {fi}io, U {fi}{2, 41, where {fi}32, ,; is a Riesz
basis for H. Let A be a lower frame bound for {£;}2°, ; and choose u < V'A. By

compactness there exists a number m > n such that

oo

Z ci(fi — gi)

i=m-+1

for all sets of sequences {c;} C [*(N). So by the remark after Theorem 3.1, {g;}52,,,,1
is a Riesz basis for span{g;};°,, . If we define the operator T' on ‘H by

THhi=fi,n<i<m, Tfi=g, i>2m+1

(extended by linearity), then we have an invertible operator on H. The argument is
that every f € H has a representation f = >° ¢; fi, leading to

1=n—+1
NI=D)fll=| > alfi—g)
i=m-+1
o L oo )
<uy| D lalP <= > afil| < —=lIfll
i=m-+1 \/Z i=m+1 \/Z

As a consequence,
codim(5pan{g; };2,,,1) = codim(span{ f;};2,,,1) =m —n.

Take m —n independent elements {g;, },—," outside span{g;}{2,, ;. Then {g;, };-"U
{9i}72,,11 1s a frame for span{{g;, },—"U{9i}i,.+1} = H, since only finitely many el-
ements have been taken away from the frame {g;}32,. If > ,"" crgs, +> 10,41 Ci0i =
0 now, then all coefficients are zero; first,

m—n oo
Z CkGix = — Z ¢igi =0
k=1

1=m-+1

(if the sums were not equal to zero we could delete an element g;, and still have a
frame for H contradicting the fact that codim(span{g;}2,,,;) = m — n) and since
{9i, }r=y" is an independent set and {g;};2,,,; a Riesz basis, all coefficients must be
zero. So {gi, " U{9i}i2,n11 is a Riesz basis, i.e., {g:}$2, also has excess n.

Now suppose that {f;}22, has infinite excess. Let {f;};c; be a subset which is a
Riesz basis. Then the corresponding set {g;}icr spans a space of finite codimension,
i.e., codim(span{g; };cr) < co. This follows by the same compactness argument as we
used in the finite excess case, which shows that there exist finitely many f;,¢ € I
with the property that if we take them away then we obtain a family which spans
a space with the same codimension as the corresponding space of g;’s. Now take a
finite family {g;};cs such that {g;}icrus is total. Since {f;}icrus is a frame with
finite excess, the finite excess result gives that {g;};crus is a frame containing a Riesz
basis, implying that {g;}32; has infinite excess. a

We can express the result in the following way: define an equivalence relation ~
on the set of frames for H by

{fi}2, ~{g:}2, & K is compact as an operator from [*(N) into H.
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The equivalence relation partitions the set of frames into equivalence classes. If a
frame contains a Riesz basis, then every frame in its equivalence class contains a
Riesz basis, and the frames have the same excess.

Let us go back to Theorem 3.3. If {g;}5°, is not total, we still know (from
Theorem 3.1) that {g;}$2; is a frame for its closed span. By checking the proof of
Theorem 3.3 we obtain the following corollary.

COROLLARY 3.4. Suppose that {f;}32, is a frame containing a Riesz basis and
that K is compact as a mapping from (*(N) into H. Then {g;}32; is a frame for its
closed linear span, and it contains a Riesz basis for this space. The excess referring
to span{g; }$2, is equal to the excess of {fi}2, referring to H, plus the dimension of
the orthogonal complement of span{g;}°, in H.

Now we want to study the excess property of perturbations in the sense of The-
orem 3.1 (b). We need a result, which might be interesting in itself. To motivate it,
consider a near-Riesz basis {f;}32, containing a Riesz basis {f;}i,c;. Unfortunately,
the lower bound for {f;};c; can be arbitrarily small compared to the lower bound A
of {f;}52,. Our result states that if we are willing to delete sufficiently (still finitely)
many elements, then we can obtain a family which is a Riesz basis for its closed span
and which has a lower bound as close to A as we want.

PROPOSITION 3.5. Let {fi}2, be a near-Riesz basis with lower bound A. Given
€ > 0, there exists a finite set J C N such that {fi}ien—7 s a Riesz basis for its
closed span, with lower bound A — €.

Proof. As in the proof of Theorem 3.3, write {f;}52, = {fi}i2; U {fi}i2+1,
where {f;}$2,, ., is a Riesz basis for H. Let d( ) denote the dlstance inside H (i.e
d(f, E) = infeerl|f —g|| for f € H,E CH) and choose a number m > n such that

€ .
d(f;, span{fi}it, 1) < \/;, ji=1,...,n

We want to show that {f;}§2,,,, is a Riesz basis for its closed span, with lower bound
A—e. Let P denote the orthogonal projection onto span{ f;};*,, ;. Since || ¢;fil| >
|| > ci(I—P)fi]| for all sequences, it suffices to show that {(I — P)f;}52,, ., satisfies
the lower Riesz basis condition with bound A —e. Let f € (I — P)H. Then

> LT =P Z|f,f P)fi)? Z|f,f P)fi)?

1=m-+1
> AlLFIE = SR I - PRI = (A - oI
i=1
To conclude that {(I — P)f;}52,, +1 has lower Riesz basis bound A — ¢, we only have
to show that {(I — P)f’b}z:m+1 is w-independent. But if Y3° . ¢;(I — P)f; =0,
then szﬂ cfi=P Z;’imﬂ ¢; fi , implying that both sides are equal to zero, since
Py 2 i1 cifi € span{fi}i™, ., and {f;}{2,,, is w-independent. Therefore ¢; = 0
for all 3. a
THEOREM 3.6. Let {f;}32, be a frame for H wzth bounds A, B. Let {g;}52, CH
and assume that there exist )\ , >0 such that A + \F <1 and

Hzci(fi —gi)|| <A Hzcifi /Y el

for all finite sequences {c;}. Then
{fi}2, is a near-Riesz basis < {gi};2, s a near-Riesz basis,

in which case {f;}2, and {g;}52, have the same excess.
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Proof. First assume that {f;}2; is a near-Riesz basis with excess n. Let m be
chosen as in the proof of Proposition 3.5, corresponding to an e satisfying the condition
A+ \/ﬁ < 1. Let @ denote the orthogonal projection onto span{f;};2,, ;. Then

every element f € H can be written f = (I —Q)f+Qf =1 -Q)f + Zfim_H cifi
for some coefficients ¢;. Now define an operator T : H — H by

Tf=f fespan{fi}Cm > Tfi=gi, i>m+1.

T is bounded. Given f € H we choose a representation as above. Then

NE=D)fll = > alfi—g)|[ <A || D0 cifil| | D el
i=m+1 i=m+1 i=m+1
7 — .l [ [
<O )| 3 e = (v = 1ei< (3 =)

It follows that T" is an isomorphism of H onto H. So {g;}$2,,,; is a Riesz basis for
its closed span, and

dim (SpAT{g: }7Z 1) = dim(Span{ fi} 2 41")
As a consequence, {f;}32; and {g;}32; have the same excess.

Now assume that {g;}5°, is a near-Riesz basis. By reindexing we may again
assume that {g;}32,,, is a Riesz basis for H. Define a bounded operator W : H —
H by Wf =3 72(f,S™'fi)g;- Then as in the original proof from [7], one proves
that W is an isomorphism of H onto H . If we define W,, : H — H by W, f =
e ni1(f, 87 fi)gs, then this operator has a range with finite codimension in H,
which we will write as

codimy (R, ) < oo.

Now let {e;}52, be the natural basis for [2(N); i.e., e; is the sequence with 1 in the ith
entry, otherwise 0. There exists a bounded invertible operator V' : H — Span{e; }§2,,
such that Vg; = e; for i > n+ 1, and clearly

codimspan{e, 3z, (Rvw,) < co.

Observe that VW, f =372 (f, 57  fi)es = {(f, ST fi)}52,41- SO

(VW) ey = D> aST' fi=8" Y afi

1=n—+1 1=n+1

Since Ry, = N(yw,)- has finite dimension, {¢;}2, ; — Y_;2, . ¢ifi also has a
finite dimensional kernel. Therefore

oo

T:3(N)—H, T{}2 = cfi

i=1
has a finite dimensional kernel, and now the theorem of Holub implies that {f;}2,
is a near-Riesz basis. By the first part of the theorem the two frames {f;}5°, and
{gi}$2, now have the same excess, and the proof is complete. a

Ezxample 2. Let us use Theorem 3.6 to give another argument in Example 1. We

consider {g;}52, as a perturbation of the frame {f;}32,, where

fi=e1, fi=ei—1, ©2>2.
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{fi}2, is a frame with excess 1 and bounds A =1, B = 2. Since

o0 o0
D> il D lel?
i=1 i=1

We conclude by Theorems 3.1 and 3.6 that {g;}32, is a frame with bounds (1 — 3)? =
7 2(1+ 2f) , and excess 1.

1/2
V{ei}s 1662( ),

i ~€i
(3

Unfortunately, the requirement that { f;}32, has finite excess is needed in Theorem
3.6. In fact we are able to construct examples, where {f;} is a tight frame with infinite
excess and {g;} does not contain a Riesz basis but where the perturbation condition
is satisfied. Let us shortly describe how one can do this. Define { fﬁ}?+11n°°1 as in
Lemma 2.7. Given € > 0, let

1 —e
n .
S =€mn-lmn . — —— E n—n | . <<
9; €( 21) +i n €( 21) ) 1 St n,
j=1

n
n
gn+1 E € (n— l)n

Now, given a sequence {c'} we have

9 n 1 o)
HZC fz _gz ’ Z [Z ] E;e(n—zl)7z+j
: J:

<6\/Z|C

By Lemma 2.5, {f/};27,,_; is a frame with bounds 1. If we choose ¢ < 1, then the

perturbation condition is satisfied with A = 0, 4 = €, implying that {g}’ }ZL+117‘:° ,isa

frame with bounds (1 —6)2, (1 +¢)2
Claim. {g}'};2T =, is a Riesz basis for H. We only need to prove that {g;'};"7, _,
satisfies the lower Riesz basis condition. Given a sequence {c!'} we have

o0 n o0 n n 1 n
" _n n
E E C; 9; E E e(n l)n E C; n E 6<7L;1)7L+l
n=1 =1 =1 i=1

n=1 i=1

n

(3) Z

n=1

i=1

(I1—¢)

Z\/W—(l—e) i ic —|2>e\/w

i=1

So actually we have an example where { fz”}?:llnoil does not contain a Riesz basis but
the perturbed family does. To obtain the example we were looking for, we use the
fact that {g/} has the lower bound (1 —€)2. By (3) above we can consider {f} as
a perturbation of {gI'} i ,if € < 1. So we get our example by choosing
€ < 1/2 and switching the roles of {f”} and {g }.

Example 3. A Weyl-Heisenberg frame is a frame for L?(R) of the form

{fm,n}m,nEZ - {eianacf(x - na)}m,nEZa
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where f € L*(R), a,b > 0. It is well known that {f, , }m.nez is a frame for L?(R) if
f has support in an interval of length 1/b and

JA,B>0: A< Z |f(x —na)|* < B, ae.
nez

This can only be satisfied if ab < 1. The case ab = 1 implies that {fmn}mnez is a
Riesz basis, cf. [2, 3]. Heil [11, p. 139] has shown that if ab < 1, then there exist finite
sets F' C ZxZ of arbitrarily large cardinality such that {fm,n}(m.n)ez2—r is a frame.
That is, if {fm,n}mnez contains a Riesz basis, then {fm n}mnez has infinite excess.

Acknowledgments. The second author would like to thank Chris Heil for fruit-
ful discussions on the subject.
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Abstract. We give a class of optimally stable solutions to Tietze’s extension problem in general,
metrically convex compact metric spaces. The extensions which solve this problem are the unique
stationary states of nonlinear processes of regularization.
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1. Problem statement. In this article, we give a class of optimally stable so-
lutions to Tietze’s extension problem in general, metrically convex compact metric
spaces. The extensions which solve this problem are the unique stationary states of
nonlinear processes of regularization. The title is suggested by the formal analogy
between the processes that we describe and the process of harmonic regularization
(the classical process of diffusion). This analogy is briefly indicated at the end of this
section and in section 4 of the paper.

Let (E,d) denote any metric space, and let f be any scalar-valued continuous
function whose domain is a closed nonempty subset of E. Since Tietze’s original
result, which produced a continuous extension £(f) of f, several solutions have been
proposed to improve the quality of the extension. Kakutani (in separable metric
spaces) and Dugundji [2] (in a more general case than the metric case) have proposed
linear and positive schemes f — E(f). These schemes are optimally data-value stable
(DV-stable); that is,

1EC) = E(llo,e < DIIf = glloo,a;

with D = 1, for any pair of scalar-valued continuous functions f, g with common
domain A. Here the symbol ||.||cc denotes the usual supremum norm. When E = R",
linear optimally DV-stable schemes exist which are, moreover, Q-stable. That is, they
satisfy

w(E(f)) < Calf),

where C' denotes a constant which does not depend on f and &(g) denotes the concave
modulus of continuity of g. These schemes are obtained [1] by both improving the
original construction of Whitney [7] and a result of Glaeser [3]. It is well known
that, in the multidimensional case (n > 1), these linear schemes cannot be optimally
Q-stable (C' > 1).

By improving a scheme of Mc Shane [5], we have obtained an optimally -stable
(C = 1) extension scheme &, which is, moreover, DV-stable with D < 3, and also
data-site stable [4]. Let us recall that £ is defined by E(f)(x) 1= sup,eqom(s)(f(a) —
&(f;d(x,a))). It can be shown that this scheme & is self-reproducing. That is,

*Received by the editors October 31, 1995; accepted for publication (in revised form) July 17,
1996.
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E(E()|B) = E(f) for any f as above and any closed subset B of E containing dom(f)
(the symbol “|” denotes restriction to). This scheme is not a local scheme because the
modulus of continuity of a function is not a local notion. The concept of locality, which
is, in smooth spaces, closely related to PDE (see section 4), has the following simple
formulation: an extension scheme & is said to be local if £(E(f)|0B)|B = £(f)|B for
any f as above and for any closed and bounded subset B of E with boundary 0B
such that the interior of B does not intersect dom(f).

In this paper, we produce, when (F,d) is any metrically convex compact metric
space, a class of extension schemes which are both optimally Q-stable and optimally
DV-stable. Moreover, we establish (Proposition 3.9) the quasi-data-site stability, the
quasi-locality, and the quasi-self-reproduction of some schemes of this class. For each
extension scheme /C of our class, the extension K(f) of f is obtained as follows.
Starting with any continuous extension fo of f (Tietze’s theorem ensures that such
an extension exists), we define inductively a sequence ( f,,)nen of continuous extensions
of f by

~ 1 1 .
frnr1(@) = fu(z) :== sup fuo(u)+ = inf fo(u),z€E,
weD(x) 2 weD(z)

where D(z) := ball centered at x of radius r(z) satisfying r(z) = 0 < =z €
dom(f); [r(z) —r(y)| < d(z,y),z,y € E.

The extension K(f) of f is the limit of this sequence, that is, the stationary state
of the process of regularization g — g. This stationary state does not depend on the
initial state fq.

Let us note, when F is a Euclidean space, the formal analogy between the process
g — g and the process of harmonic regularization g — ¢ defined by

i(x) = / o(w)dy/ dy,z € E,
yeD(z) yED(x)

for which it is known [6] that the stationary states are harmonic functions.! It is
this analogy which has led us to call the processes g — ¢ processes of harmonious
regularization. It does not seem impossible to us that the processes of harmonious
regularization, which regularize by ordering (the processes of harmonic regulariza-
tion regularize by homogenizing) could occur in some model of the morphogenesis of
ordered states of materials.

From a technical point of view, we prove the existence of harmonious exten-
sions with the help of Ascoli’s theorem and of Schauder’s fixed point theorem. The
nonlinearity of the harmonious extension schemes makes the proof of the uniqueness
more difficult than in the harmonic case (see Theorem 3.3). Schauder’s theorem is
insufficient to prove the convergence of our processes to their stationary states: our
proof needs an analysis of the story of the processes of harmonious regularization (see
Theorem 3.5).

2. Preliminaries. Let us first recall some definitions. We call concave modulus
of continuity any mapping w : R™ — RT which satisfies the following:

(i) w(0) = 0 and w is continuous at 0;

(ii) w is increasing: hy < ho = w(hy) < w(hg);

1We are indebted to Prof. Y. Guivarc’h, who brought the result of W.A. Veech to our attention.
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(iil) w is concave: Y(A;)i=1,...7,0 < X; <1, Z?:l A =1,

V(hi)i=t1,....n, 2": Aiw(hi) < w (i )\ihi) .
i=1 i—1

Let (E,d) be any metric space and let f be any function from E to R. We say
that f is Q-continuous if there exists a concave modulus of continuity w such that,
for any =,y € E,

[f(y) = f(2)] < wld(z,y)).

For such a function f, the lower bound of those concave moduli of continuity which
satisfy the inequality above is still a concave modulus of continuity which satisfies this
inequality. We denote it by &(f).

Any Q-continuous function is uniformly continuous. Any bounded and uniformly
continuous function is 2-continuous. Therefore, any continuous function from a com-
pact metric space to R is Q-continuous.

A metric space (E,d) is said to be metrically conver if, for any x,y € FE and
for any real r, 0 < r < d(z,y), there exists some z € E such that d(x,z) = r and
d(z,2z) +d(z,y) = d(z,y).

Moreover, let us recall the following formulas:

(1) sup z; —supy,; = sup inf (z; — y;);
icl jeJ iel J€J
2 inf 2; — inf y; = sup inf(z; — y;);
) i el = s )
(3) supx; — supy; < sup(x; — y;);
icl iel iel
4 inf z; — infy; < ).
(4) inf z; %Iellyz,silel?(xl Yi)

The main results of this paper are contained in Theorems 3.3 and 3.5 below.
From now on, (E,d) denotes any metrically convex compact metric space, A any
closed nonempty subset of E, and r any mapping from E to RT which satisfies the
following:

(i) r(z) =0iff x € A;

(i) |r(z) — r(y)| < d(z,),,y € E.

Let us note here that such mappings r exist:

(i) r(x) := pd(z,A),0 < p < 1;

(i) 7(x) := inf(h,d(z, A)), h > 0.

We denote by D(x) the ball of center z, radius r(x):

D(z):={y € E:d(z,y) <r(z)}.

We start with a geometrical lemma.
LEMMA 2.1. For any x,y € E, we have

1
su inf d(u,v)+ = su inf d(u,v) <d(z,y).
ueplf@veD(y) (u,v) UGDI()WeD(z) (u,v) < d(z,y)

DN | =
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Proof. Let us first establish that, for any z,v € E such that d(x,v) > r(z), we
have

inf d =d —r(a).
want (u,v) = d(z,v) —r(z)

To prove this inequality, we note that, by convexity, there exists z € E such that
d(z,z) = r(z) and d(z,v) = d(z,v) — r(z). Thus we have z € D(x). Moreover, for
any u € D(x), we have, by the triangle inequality,

d(z,v) < d(z,u) + d(u,v) < r(z)+ d(u,v).
We infer that d(u,v) > d(z,v) — r(z) = d(z,v) and, therefore, that

inf d(u,v) = d(z,v) = d(z,v) — r(z),
ueD(z)

which is the stated equality.
Now let x,y € E be such that there exists v € D(y), d(x,v) > r(x). Using the
equality above, the triangle inequality, and the definition of D(y), we have

sup inf d(u,’U) < sup d(a:,v) _T(x)
veD(y) wED(x) veD(y)

< sup (d(z,y) +d(y,v)) —r(z)
veD(y)

< d(z,y) +r(y) —r(z).

We are now ready to prove the inequality of Lemma 2.1.
First case: D(xz) C D(y). In this case we have

su inf d(u,v) =0
uEDI()J;)UeD(y) ( )

and, by the inequality just established,

sup inf d(u,v) < d(z,y) +r(y) — r(z).
vED(y) u€D(x)

The result follows in this case since, by hypothesis, we have |r(z) — r(y)| < d(z,y).
Second case: D(y) C D(x). This case is similar to the first one.
Third case: D(y) ¢ D(x) and D(x) ¢ D(y). In this case we can apply twice the
inequality previously established:

1 1 1
— su inf d(u,v)+ = su inf d(u,v) < =(d(z,y) +r(y) —r(x
3 S L () b5 st () < 5 (dey) 4 7() 7))
1
+ 5@ y) +r(@) —r(y))
<d(z,y),

which is the stated result. 0
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3. Main results.
DEFINITION 3.1.  For any bounded function f from E to R we define a new
bounded function [ from E to R, called the harmonious reqularization of f, by

fla) = §uesg1()x)f(U) + %égf(@f( u),z € E.

PROPOSITION 3.2. (i) For any uniformly continuous function f from E to R, we
have

o) £ 607y
(i) For any bounded functions f, g from E to R, we have
IF = Glloc. < 1F = gl
Proof. (i) Let z,y € E. We have
f) - F) = (uesgl()m)f(u) it f )) -3 (Uesgr()y)f(v) TR >>
=5 sw inf (fw)~ f(@) 5 s inf (fu) - f(2)

2 ueD(z) vE€D(Y) 2 veD(y) €D (@)

1 1
= sup inf @(f;d(u,v))+ = up inf @(f;d(u,v
g S dnl (f5d( D aB) (f;d(u,v))

1.
5 su inf d(u,v) ;osu inf d(u,v
2 (f ueDF()L) veD(y) ) <f UeDI()y) u€D(x) ( )>

<w f; sup inf d(u,v) —|— — sup inf d(u,v)
2 ueD(x) veD(y)

veD(y) u€D(x)
< @(fid(x,y)).

IA
l\.’)

\ /\

The first equality is a consequence of the definition of f , and the second comes from
formulas (1) and (2). The first inequality follows from the definition of w(f), the
second from the monotonicity of @(f), the third from the concavity of &(f), and the
last from Lemma 2.1 and from the monotonicity of &(f). We finish the proof by an
exchange of the roles of x and y.

(ii) This assertion follows immediately from formulas (3) and (4). a

We are now ready to establish the following theorem.

THEOREM 3.3. Any continuous function f from A to R has a unique continuous
extension K(f) from E to R which satisfies the functional equation

1 1
5 )= = su u) + = inf u).
(5) g9(z) uengm)g( ) 2ueD(w)hf/( )

Proof. Existence: let C°(E,R) be the Banach space of all continuous mappings
from E to R with the norm |||,z of the uniform convergence. Let

K :={g€C’E,R): g extends f,||glloc,e < || flloo,a,@(g) < &(f)}-
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Using the result of Mc Shane ([5, Theorem 2 and Corollary 2]), K is a nonempty
subset of C°(E,R). Let g1,92 € K,0 < XA < 1,9:= (1 — A)g; + Ago. It is immediate
that ¢ is a continuous extension of f and that

9lloc, 5 < ([ flloo, -

Moreover, for any x,y € E, we have

lg(z) —g(W)| < (1 = N@(g15d(x, y)) + Ao(g2;d(z,y)) < w(f;d(z,9));

that is, ©(g) < &(f). We infer that K is a convex subset of C°(E,R). This set K
is closed and, by Ascoli’s theorem, it is, moreover, a compact subset of C°(E,R).
Using Proposition 3.2, we have [|§llco,z < ||¢]lco,z and &(§) < @(g). Therefore,
the operator g — ¢ maps K into K. Using Proposition 3.2 (ii), this operator is a
continuous mapping. The proof of the existence follows now from Schauder’s fixed
point theorem.

Uniqueness: let g and h be two continuous extensions of f which satisfy the
functional equation (5). Let us set

A= sup(g(@) ~h(x)), Fi={z€ E:g(x) ~ h(z) = A},

M = 216129(17), G:={zxeF:g(x)=M}

The set G is nonempty because E is compact and because g and h are continuous
mappings. Let us first show that D(z) C F for any x € G. Let us assume, by way of
a contradiction, that there exists € G such that D(z) ¢ F. Since G C F and since
g and h are two extensions of f which satisfy (5), we have

1 1 1 1
A=g(x)—h(z) == su z)— = sup h(z)+ = inf z) — = inf h(z).
o) A= S o)~ 5 Swp B+ I o)~ g ()

Since, by formula (4) and by definition of A we have

inf g(z)— inf h(z) < sup (g9(2) — h(z)) <A,

2€D(x) z€D(z) z€D(z)
we infer that
(6) A< sup g(z)— sup h(z).
z€D(z) z€D(z)

Then let y € D(x) such that g(y) = sup,cp(,) 9(2). Since g(z) = M and z € D(x),
we infer that g(y) > M.

First case: g(y) > M. In this case, we have y € F because, by definition of F'
and M, we have g(z) < M for any z € F. But by (6), we also have

A <g(y)— sup h(z) <g(y) —h(y) <A,
z€D(x)

that is, A = g(y) — h(y), from which we infer y € F', a contradiction.
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Second case: g(y) = M. In this case, as g extends f and satisfies (5), we have

1 1
z)=—= sup ¢g(z)+ = inf z).
9(z) 2ZGD(I)9( ) 226%)9( )

As x € G, we have g(x) = M. Therefore, inf,cp(,) g(2) = M, and it follows that for
any z € D(x) we have g(z) = M. Since, by hypothesis, D(x) is not contained in F,
let t € D(z), t ¢ F. We have g(t) = M. Applying (6) again, we obtain

A <g(t)— sup h(z) <g(t)—h(t) <A
ze€D(x)

Now, as in the first case, we obtain A = g(t) — h(¢); therefore, t € F, a contradiction.

We have therefore proved that, for any = € G, D(x) is a subset of F. Hence, for
any u € D(x), we have g(u) < M. Applying (5) again, we infer that g(u) = M for
any u € D(x). In other words, for any x € G, D(z) is a subset of G.

Now let us show that G| A # 0. Let us assume, again by way of contradiction,
that the distance d(G, A) from G to A is strictly positive, and let z € G, a € A such
that d(z,a) = d(G, A) > 0. Using the hypotheses on the mapping r, we have r(a) = 0,
r(z) > 0, and r(x) < d(x,A) < d(x,a). By convexity of (E,d), there exists z € E
such that

(i) d(z, 2) = r(e);

(i) d(z,a) = d(z,a) — r(x).

From (i), we have z € D(z). Since D(zx) is a subset of G, we infer that z € G.
From (ii), we have d(z,a) < d(G, A), a contradiction.

Now, as G C F, we also have F()A # 0. As g and h are both extensions of f,
we infer that A = 0, that is, g < h. By exchanging the roles of g and h , we obtain
g = h, which is the stated result. 0

Remark 3.4. (1) A corollary of the proof of Theorem 3.3 (uniqueness) is that
the harmonious extension schemes KC satisfy the maximum principle.

(1) sup,.e s K(/)(2) = sup{ f(a) : @ edom(f)}.

(ii) If there exists « belonging to E—dom(f) such that

K(f)(x) = sup K(f)(2),

zeFE

then IC(f) is constant in a neighborhood of . Here, as usual, f denotes any scalar-
valued continuous function whose domain is a closed nonempty subset of E.
(2) Another corollary of the proof of Theorem 3.3 is that

w(K(f)) < w(f)-

The properties of stability of the extension scheme K are formulated in Theorem
3.5 below. Hypotheses and notations are those of Theorem 3.3.

THEOREM 3.5. (i) For any continuous function fo from E to R which extends f,
the sequence (fn)nen inductively defined by fni1 = fn converges to K(f).

(ii) If g is any continuous function from A to R, then we have

IK(f) = K(@)lloo.2 < 1f = glloc,a-

Proof. To show (i), it is sufficient to prove that lim, ., D, = 0, where D,, :=
SUPzer |fn+1(33) - fn(l")|
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Indeed, by definition of the harmonious regularization and from Proposition 3.2,
the sequence (f,,)nen is equicontinuous and equibounded. Therefore, by Ascoli’s theo-
rem, there exists a subsequence (f,(n))nen Which converges to a continuous extension
of f denoted by g. Since, by Proposition 3.2(ii), the operator of harmonious regular-
ization is continuous, we infer that

lim fap(n) = g

n—oo

Now, as f;p(n) = fo(n)+1, the convergence to 0 of sequence D,, implies that

Jim o = Jim Fo,

that is, § = ¢g. From Theorem 3.3, we have g = IC(f).

If the sequence (f,)nen did not converge to KC(f), there would exist € > 0 and
a subsequence (fy(n))nen such that || fy;) — K(f)|leo,z > € for any n € N. Using
Proposition 3.2 and Ascoli’s theorem again, we could, by the same argument, obtain a
new subsequence converging to a continuous extension of f satisfying (5) and distinct
from KC(f), contradicting Theorem 3.3.

To prove that lim,, .~ D, = 0, we set

Al = sup(fri1(z) — fu(z)),
z€E

n 7= 8P (fu(2) = frp1(2))-

el

A

We notice that the sequences (A;}),en and (A, )nen are positive because the functions
fn are extensions of f.

As 0 < D,, <sup(A},A), it is sufficient to prove that lim, .., A} = 0 and
lim,, o A, =0.

Let us show that these sequences are decreasing. From the definition of f,,41 and
fra2, we have

1 1 1 1
AI =sup | = su z)— = su z)+ = inf z) — = inf z) | .
+ :DGI; < ZGDI()I) fn+1( ) 2 ZGDI():E) f”( ) 2 z€D(z) fn+1( ) 2 z€D(x) f"( )>

Therefore, by formulas (3) and (4), we have

sup fui1(2) = sup fu(2) < AF
ze€D(x) zeD(x)

and

inf f, — inf f.(2) < AF.
zelg(:v)f +1(Z) zelg(a:)f (Z)— n

It follows that A, ; < AJ. The proof is similar for the sequence (A;),en.

Now the proof of lim,, o, D,, = 0 and, therefore, the proof of (i) will be an
immediate consequence of the following two lemmas.

LEMMA 3.6. Let & > 0 and let (up)nen be a decreasing sequence of positive
numbers satisfying, for any integer n and for any strictly positive integer p,

Untp < 27P((27 = p)un + 6).
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Then

lim u,, = 0.
n—oo

From now on, we set 6 := w(fo; diam(E)), where diam(E) denotes the diameter
of the compact metric space E. Using Proposition 3.2(i), we have

[fn(z) = fu(y)l < 6

forany n € N, z,y € E. 0
LEMMA 3.7. For any integer n and any strictly positive integer p, we have

(i) Afy, < 27P((2° — p)AY +6),
(i) Aypp < 277((27 —p)AL +0).

Proof of Lemma 3.6. Let p > 0 and a, =1 — 27Pp. By a recursive application
of the hypothesis, we obtain, for any k£ € N, k > 0,

Ukp < ApU(k—1)p + 6277

(ap)fuo + (1+ -+ (ap)F 15277

That is,
Upp < (ap)kUQ + (5/p.

The sequence (uy,)nen is positive and decreasing and therefore converges. Thus
its subsequence (ugp)ren also converges to the same limit. Since 0 < a, < 1, the
inequality above shows that this limit is positive and smaller than 6/p. Lemma 3.6
follows since p can be chosen arbitrarily large. 1]

Proof of Lemma 3.7. The proofs of (i) and (ii) are similar. Let us show (i).

Let n € N and zg € E such that f,11(z0) — fu(zo) = A. We define inductively
two sequences (zx)k=0,....n and (yi)k=0,...n—1 of elements of E by

(a) Yo = Zo,

(b) @41 is chosen in D(zy) such that f,—k(Tr+1) = SUP.ep(ay) fa—k(2),

(¢) Yry1 is chosen in D(yg) such that fr_p_1(yr+1) = inf.epry,) far—1(2).

Now let p, k be integers, 1 <p<n,0<k<p-—1.

By definition of f,_kt1, Tk, and xiy1, we have

frrsa@) = 5(Furloin) +_n fuk(2))

D(zy)

Using this equality inductively for £ =0,...,p — 1, we obtain

fn+1(IO) =27P (fn+1 -p xp ZQP - kzean(f:;ck fn k( ))

Similarly, we also have

p—1
fn(yo) = (fn —p(Yp) Zzp E sup fooka(z ))

k=0 z€D(yk)
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Now we write A} in the following form:

Af =277 <fn+1—p(17p) = fo-p(yp) + Inf fu(2) = sup foo1(z)+ R+ Sl) )

2€D(z0) 2€D(z0)
where
p—1 )
Ry = ;2”‘1 fnE i) - (277 — sup fa-1(2),
p—1 ‘
Sy = (2071 D nf fa(2) - ;2”‘H Zesggi)fnflfi(Z)'

By the definitions of A;lp and §, we have

frt1-p(@p) = fro—p(Yp) = frr1-p(@p) = frp(Tp) + fr—p(p) = fr—p(yp)
<AY L, +6

Moreover, using xo € D(zg) and the definition of f,,, we have

inf  fo(z) = sup fan-i1(2) < fu(®o) — sup  fr_1(2)

z€D(x0) zeD(z0) z€D(x0)
1 1
<= su n—1(z)+ = inf f,_1(z) — su n—1(z
3ot " B by BT 5 )
1
< = inf _1(z) — su _1(z
2 (zGD(Io) fn 1( ) zGD(Iz:o)fn 1( )>
<0.
Therefore,
(7) Al <27P(AF 464 R+ S).
Now it remains to bound R; and Sy. They are the first terms of sequences (R )k=1,... p—1

and (Sk)k=1,...p—1 defined by

Ry, _Z2p =" inf fn i(2) = (2p7k_1) sup  fnr(2),

z€D(z;) 2€D(zk_1)
p—1
S = (2P7%F —1) inf oP—1=i gy
k ( )ZGD(yk 1) fn+1 k ; zeDgi)fn - Z( )

SUBLEMMA. We have (i)

1
(8) Rk < <2p1k 2) A:_l_k+Rk+lak:17"'7p727

(9) Rpfl S 07
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and (ii)
1
(10) Sk < (2p—1—k - 2) A:_l_k+sk+l7k: 13"'7p_27
1
(11) S,_1 < iA;Lp.

Using part (i) of this sublemma, we have, therefore,

Ry < (2p—2 - ;) Ay + <2p_3 - ;) A (2 - ;) ARSI

Since sequence A! is decreasing, we infer that

_ 1 _ 1 1
R1§(2p 2_§+2p 3_2++2_2>A’;t+1—p7

that is,
- p
(12) Ry < (2? L - 1) A
Similarly, using (10) and (11), we obtain
1
1 < (ot -2 _)atr
( 3) Sl — ( 2 2> n—p

Combining (7), (12) and (13), we arrive at
AF < 27P((2P — p)AS_, +6).

The stated result follows by the translation of n to n + p.
Proof of the sublemma. First let us show (8). Since z € D(xk—1), we have

— sup  fok(2) < —fo-r(xk)
z€D(xk—-1)

1 1
< —= su nek—1(2)— = inf fL_r_1(2).
hS ZZED(I;%)f k 1( ) 2Z6D(xk)f k 1( )

Using this inequality, we can bound Ry as follows:

Ry < Rpy1 + <2p_1_k - 1) { inf frok(z) — inf fnoop-1(2)

2 2€D(xy) zeD(xk)

+1< inf )fn—k(z)_ sup fn—k—1(2)>~

2 \ zeD(zk z€D(ay)

The expression in square brackets in this last inequality is directly bounded by
AT ., and the last term is negative (by the argument used to prove inequality (7)).
Therefore, we obtain

. 1
Ry < Ry + <2p 1=k _ 2) A:_k_la

which is the stated inequality (8).
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Moreover, since z,_1 € D(zp_1), we have

R, 1= inf e z)— su — z
p—1 zeD(mp,l)f p+1() zeD(zIz,z)f p+1()
< fopri(®p_1) —  sup  fupri(2).

z€D(xp_2)

As, by construction, we have z,_1 € D(z,_2), we infer inequality (9).
The proof of (10) is similar to that of (8). It remains to bound S,_1. We have

S, 1= inf n— zZ)— su n—p\%)-
p=1 ZED(yp72)f p+2( ) ZED(yI;—l)f p( )

As yp—1 € D(yp—2), we have

Sp—l < fn—p+2(yp—1) - sup fn—p(z)'
ZED(ypfl)

Using the definition of f,,_py2(yp,—1) , we can write

Sp—1 ;( sup  fo—pt1(2) —  sup )fn—p(z)>

2€D(yp—1) 2€D(yp—1

1
+ = inf n— z)— sup n—p(2
2 (zED(yp—l) f p+1( ) 2€D(yp—1) f p( )>

< %Azfp + % (fanrl (ypfl) - sup fnp(z)> .

z€D(yp-1)

IN

Using now the definition of f,,—p4+1(yp—1), we have

1 1
ne _1)== su n_p(z)+ = inf n_p(2
f p+1(yp 1) 226D(£71)f p(2) 2Z€D(yp_1)f p(2)
< sup frop(2).
ZGD(yp—l)

Finally, we have S,_1 < (1/2)A}_ which is inequality (11).

We have now finished the proof of the sublemma, of Lemma 3.2, and, therefore,
of part (i) of Theorem 3.5.

Proof of Theorem 3.5(ii). Using a result of Dugundji [2], let fp and gy be two
continuous functions from F to R which extend, respectively, f and g and are such that
[ fo=golloo,& < [|f=glloc,a. Using Proposition 3.2, we have || fo—gnllco,z < [|f =9lloc,4,
n € N. We obtain the stated result by letting n tend to co. O

Remark 3.8. By Theorem 3.5(i), we have a new proof of the existence of a
continuous solution of functional equation (5) which extends f. This proof gives some
information on the speed of convergence of the process of harmonious regularization.

From now on, we shall consider only those harmonious extension schemes K for
which the radius r(z) of the ball D(z) used in the description of K has the following
form: r(x) =inf(h,d(z, A)), h > 0, h independent of z. As the set A of data sites will
not remain fixed, we shall use (A, z), D(A, z) instead of r(x), D(x). As outlined in
section 1, we prove in Proposition 3.9 below further properties of those L. We shall
denote by ¢ the usual Hausdorff distance between compact nonempty subsets of E.
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PROPOSITION 3.9. For any scalar-valued continuous function f whose domain
dom(f) is a nonempty closed subset of E, we have the following properties:

(i) for any closed subset B of E whose interior does not intersect dom(f), we
have

IKIE(NNOB) = K(F)lloo.8 < 20(f3 h),

where OB denotes the boundary of B;
(ii) for any closed subset A of E containing dom(f), we have

IKIE(NIA) = K(f)lloo,p < 20(f3 h);
(iii) for any closed nonempty closed subsets A,B of dom(f), we have
IC(f1A) = K(fIB)lloo,e < 4(0(f; 6(A, B)) +@(f; h)).
Proof. Let us show (i). For convenience, let us set f1 := KC(IC(f)|0B), fa := K(f),
Di(z) := D(0B, x), Ds(x) := D(dom(f),x), and let us denote by r;(x) the radius of

Dj(z). Note that, as the interior of B does not intersect dom(f), we have Dy (z) C
D5 (x) for any x € B. Setting
A = sup(fi(z) — f2(x)), A1 :=sup(fe(z) — fi(z)),
zEB zeB

we must show that Ao and Aoy are smaller than 20(f;h). As these two cases are
similar, let us show, without loss of generality, that Ao < 2w(f;h). First of all,
let us show that Ajy is attained in the strip K := {z € B : d(z,0B) < h}. This
result is immediate if B = K. Otherwise, we note that, by definition of the function
r, D1(y) = Da(y) for any y € B\K. From this, the proof of the uniqueness of the
harmonious extension in Theorem 3.3 shows that Aq, is attained for an element x of
B such that d(xz,0B) = h, that is, for an element x of K. Now, as K is a harmonious
extension scheme, we can write, for such an = € K,

Aqg = fi(z) — folx) = %Ql + %Q%
where

Q1:= sup fi(z)— inf fo(z), Q2:= inf fi(z)— sup fa2).
z€D1 (x) z€D2(x) z€D1(x) z€Ds(x)
As z € K, we have D1(x)NdB # (), since r1(z) = d(z,dB) in this case. Choosing
¢ € Dy(z) N OB, we obtain Q2 < K(K(f)|0B)(c) — K(f)(c) and, therefore, Q2 < 0,
because K is an extension scheme. On the other hand, we can write Q1 = R; + S1,
where

R = _ : f , S — . f _ . f ‘
1 ZGS[[’IRZE) fie) Zelfr’lz(w)fl(Z) ! zellgz(z)fl(z) zellirllz(w) f2(2)

We immediately have S; < Ajy. Using the optimal Q-stability of K (and D;(x) C
Ds(z)), we have also Ry < &(f;2r2(x)). Since, by the definition of the function r, we
have ry(z) < h, we obtain

1.
Aqg < 5(2w(f; h) + Aq2),

that is, A1a < 20(f;h), which is the desired inequality. The proofs of (ii) and (iii)
use similar arguments. |
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4. Final remark.
Remark 4.1. It is known that the processes of harmonic regularization are, in
Euclidean space RY, associated with the heat equation

ou N 52y

ot — oz’

An elementary calculation shows that the process of harmonious regularization con-
sidered in Proposition 3.9 above, for infinitesimal h, is possibly connected with the
following PDE:

On_ (g~ 0udu O ) s (ou)’
ot - =1 8361 81’j 8331895] =1 aﬂfz '
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BEHAVIORS OF SOLUTIONS FOR THE BURGERS EQUATION
WITH BOUNDARY CORRESPONDING TO RAREFACTION WAVES*
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Abstract. We investigate the asymptotic behaviors of solutions of the initial-boundary value
problem to the generalized Burgers equation u¢ + f(u)z = uzz on the half-line with the conditions
u(0,t) =u—, wu(oo0,t) = uq, where the corresponding Cauchy problem admits the rarefaction wave
as an asymptotic state. In the present problem, because of the Dirichlet boundary, the asymptotic
states are divided into five cases dependent on the signs of the characteristic speeds f’(u+) of the
boundary state u— = u(0) and the far field state u4 = u(00). In all cases both global existence of the
solution and the asymptotic behavior are shown without smallness conditions. New wave phenomena
are observed. For instance, when f’(u—) < 0 < f’(u4), the solution behaves as the superposition of
(a part of) a viscous shock wave as boundary layer and a rarefaction wave propagating away from
the boundary.

Key words. rarefaction wave, viscous shock wave, asymptotic behavior
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PII. S0036141096306005
1. Introduction. We consider the initial-boundary value problem (IBVP) on
the half-line Ry = (0, 00) for scalar viscous conservation laws:

ut+f(u)q;:um, $€R+, t>0,

(IBVP) u(0,t) =u_, t>0,
u(z,0) = up(x) = { =u- z=0,

— Uy T — 00,

where uy are given constants. Here, we study the case that the corresponding Rie-
mann problem

us+ f(u), =0, z€R, t>0,

(1.1) Ry Ju- x<O,
u(z,0) = ugt(x) := w, >0
yields the rarefaction wave solution
wow< flu
(1.2) rfia/t)=q ()7 @/t) flu)t <z < fllut,
(I x> f(ug)t.
This is the case when either
(1.3) f"(u) >0 for u under consideration, and wu_ < uy
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or
f"(u) <0 for w under consideration, and wu_ > uy.

Without loss of generality we assume (1.3). The problem where the corresponding
Cauchy problem has a viscous shock wave has been investigated by Yu [13], Liu and
Yu [7], and Liu and Nishihara [6].

Since the solution of (IBVP) has a boundary at = = 0, the signs of the character-
istic speeds f’(u4 ) divide the asymptotic state into five cases:

(1) fus) < f'(ug) <0,
(2) fllu-) < f'(uy) =0,
(3) fllu-) <0< fl(uy),
(4) 0= f'(u") < fl(uy),
(5) 0< fl(u) < f(uy).

We also assume

(L4) F(0) = £/(0) =0

without loss of generality. Then, the graph of f in each case is shown in Figure 1.1.

@

O=u. u+

Fia. 1.1.

In the cases (1) and (2), the IBVP has a stationary solution ¢ = ¢;(z),7i = 1,2,
respectively.

LEMMA 1.1. Suppose that f € C?, and (1.3) and (1.4) hold. When (1) f'(u_) <
flug) <0 or (2) fflus) < f'(ug) =0, the boundary value problem of the ordinary
differential equation

f(¢)a: :(bmmv z €R+>
(1.5)

P(0) =u—, ¢(+00) =uy
has a unique solution ¢; € C3([0,00))(i = 1,2), respectively, which satisfies

(1.6) P(x) >0, i=1,2,
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¢1(x) — us| < Crexp (=[f'(uq)|2)
(1.7)
|p2(2) —up| < Co(1+2)7"

for some constants Cy and Cs. A
Remark 1.1. If we take the extension f of f as Figure 1.2, then there is a unique
viscous shock wave ¢;(x + ) up to a shift such that

fA((z))z = dgzwa S R,

(—00) = they  B(+00) = s

-

Fic. 1.2.

In fact, both the Rankine-Hugoniot condition flu)=Fu) _ s = 0 and the Oleinik

Ug — Uy
entropy condition —s(¢—uy)+ f(¢)— f(us) < 0for uy, < ¢ < ug hold. Therefore, we
can take ¢;(x) = g?)(x+x0)|R+, the unique profile with ¢(zo) = u_. We also note that
oi(x)(i = 1,2) is, respectively, a part of a viscous shock wave which is nondegenerate
in the case (1), degenerate in the case (2). For the details, see Liu and Nishihara [6].
Denoting the usual Lebesgue space and Sobolev space by L? = L?(R,) and
H' = H'(R.), respectively, we have the first main theorem.
THEOREM 1.2 (in the case of f/(u_) < f'(uy) <0). Suppose that (1.3) and (1.4)
hold and that ug — ¢ € H', where ¢ = ¢;(i = 1,2) is a stationary solution obtained
in Lemma 1.1. Then there exists a unique global solution u of IBVP such that

u—¢ e C([0,00);HY), (u—¢), € L*(0,00; H")
and, moreover,

sup |u(z,t) — d(x)] = 0 as t— oo.
R

Decay rates of u — ¢ are also obtained in the next section.
Next, we consider the cases (4) and (5) where the asymptotic state 1% (z, t) is the
restriction to R of the rarefaction wave rf(x/t) given by (1.2):

(1.8) V(2. t) = r(z/t)|R, -

THEOREM 1.3 (in the case of 0 < f'(u_) < f'(uy)). Suppose that (1.3) and (1.4)
hold and that ug — = (-,0) € H'. Then, the IBVP has a unique global solution u(x,t)
which satisfies

u—YReC([0,00); HY), (u—1P)s, upe € L*(Ry X Ry),
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and
sup |u(z,t) — T (z, )] = 0 as t— oo.
Ry

Finally, consider the case (3), which is the combination of both the cases (2) and
(4). The asymptotic state is the superposition of ¢ = ¢o(z) and ? = ¢ (x,t), where
¢ is the stationary solution connecting u_ (< 0) to 0 and £ is the rarefaction wave
connecting 0 to u4 (> 0). See Figure 1.3.

2

¢ (x)

u. 0 us u. u(x,t)

Fia. 1.3.

The following is our main theorem.

THEOREM 1.4 (in the case of f'(u_) < 0 < f'(uy)). Suppose that (1.3) and (1.4)
hold and that ug — ¢2(-) — 4(-,0) € H. Then, there exists a unique global solution
u(z,t) of IBVP) such that

u— ¢y — YR € C([0,00); HY),

(u - ¢2 - 7/14112)273 (U - ¢2)ZE$ S LZ(R+ X R+)7
and

sup |u(x,t) — ¢o(x) — i (z,t)] = 0 as t— oco.
Ry

Remark 1.2. As noted in Remark 1.1, ¢ is a part of a viscous shock wave. Hence,
the superposition of the viscous shock wave and the rarefaction wave constitutes our
asymptotic state. As far as the authors know, there are few results on the stability of
the superposition of different types of nonlinear waves (cf. Liu [5] for another example
of such a superposition, but in an entirely different setting). In the Cauchy problem
there is the question of determining the location of viscous shock waves. In the present
case, the location is uniquely determined by the boundary.

Remark 1.3. Since ¢o(x), i (2,t)|s=ta — 0 as t — oo for 0 < a < 1, the solution
u(x,t) in Theorem 1.3 behaves like

oo (x), 0<z<Cty,
u(xz,t) ~
(e, t), ©>Ct*,

as t — oco. The asymptotic rate we will obtain is optimal when a = 1/2.

Our plan of this paper is as follows. After stating the notation, in section 2 we
investigate the cases (1) and (2), which correspond to the viscous shock waves. The
cases (4) and (5) corresponding to the rarefaction waves are investigated in section 3.
In the final section, we consider the case (3), which is the main part of this paper.
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Notation. By ¢;,C;(i € Zy), or simply ¢, C, we denote several positive constants
without confusion, where Z is a set of positive integers. We also denote f(z) ~ g(x)
as ¢ — a when C~'g < f < Cg in a neighborhood of a. For function spaces, as
stated above, L? = L?(Ry) and H! = H'(R) denote the usual Lebesgue space and
Sobolev space with norms || - || and || - ||1, respectively. For the weight function w(z),
L? denotes the space of measurable functions f satisfying \/wf € L? with the norm
|flw = (J;° w(@)|f(x)|*dz)'/2. In the present paper we will use the weight function
w(z) = (2)8 = (14 22)%/2, 2 > 0. The space L%xw is written simply by L% with
norm || ||

2. Convergence to a viscous shock wave.

2.1. Reformulation of problem. We restate our problem
ur+ f(u)y = Uge, z€Ry, >0,

(IBVP) w(0,t) =u_, t>0,
u(z,0) =up(z) = {

=u_ x=0,
— Uy X — +00,

with f”(u) > 0 and u_ < uy <0.

The stability theorem for the viscous shock waves to the equivalent problem has
been obtained by Liu and Nishihara [5], in which the flux function f is not necessarily
assumed to be convex or concave. Here, because of the convexity of f, we will obtain
sharper results.

Putting ¢ = ¢;(x)(i = 1,2) and

(2.1) u(z,t) = ¢(z) + v(z,1),
(IBVP) can be reformulated as

v+ (f(@+0) = f())e = Voo, TER4, t>0,
(2.2) v(0,t) =0,

v(x,0) = vo(z) = ug(x) — ¢(z).

THEOREM 2.1 (in the case of f'(u_) < f'(us) < 0). Assume that the same
conditions as those in Theorem 1.1 hold and that vy € H'; then there exists a unique
solution v of (2.2) which satisfies

v e C([0,00); HY), w, € L*(0,00; H),

sup |v(z,t)] = 0 as t— oco.
+

Theorem 1.1 is a direct consequence of Theorem 2.1. The combination of the
local existence and a priori estimates proves Theorem 2.1.
We define the solution space by

X(0,7)={veC(o,T);H"); wv,e L*0,T;H") with
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O v(x,t)|g=0 < oo for t€ (0,T7) and m e Z,}.

PROPOSITION 2.2 (local existence). For any vo € H' with ||vo||s < M, there
exists a positive time Ty and a unique solution v € X(0,Ty) of (2.2) satisfying

SUPg< <, |00, 8)|[1 < 2M.
The equation (2.2) is rewritten as an integral equation

(2.3) v(a, 1) = / Gy oo (y)dy + / / Gyt — )6+ 0) — F(6)adydr,
where

1 )2 ot)2
G(z,y;t) = T (e( T —e*( i >

Making use of (2.3), Proposition 2.2 is proved in a standard way.

PROPOSITION 2.3 (a priori estimate). Suppose that v is a solution of (2.2)
in X(0,T) for a positive constant T. Then, there exists a positive constant C =
C(|voll1), independent of T, such that the solution v satisfies the estimate

t
(2.4) sup IIU(T)H?+/ (IIV v + [|va(7)|[})dr < Cllvol[3.
o<r<t 0

2.2. A priori estimate. We devote ourselves to the proof of Proposition 2.2.
Let v be a solution of (2.2) in X (0,T). First, multiply (2.2); by v; then we have
a divergence form

Ptv

(30%)e + {(f(¢ +v) = f(P)v - (/ f(s)ds — f(¢)v> - vxv}
6

(2.5) .
+(f(p+v) = f(9) = f'($)v)ds + vZ = 0.

Since vg € H', supg, |vo(z)| < Cp, and so

(2.6) sup |v(z,t)| < Cp, 0<t<T,
Ry

due to the maximum principle of the parabolic equation. Hence,
(2.7) (f(@+v) = f(9) = ['(9)v)pr > = duv?,

where ¢ 1= min,__cy<u<u,+c, f”(u) > 0. Integrating (2.5) over Ry x (0,t) and
using (2.7), we have

(2.8) (@)1 + /Ot(l $o0(T)|* + |[va (7)|P)dr < Cflvol[*.
Next, differentiate (2.2) in 2 and multiply the resultant equation by v, to obtain
(302) +{(f/(¢+0) = F1(0))davs + 51'(¢ + 007 = Vagts}o
~(f'(& +v) = [1(0)Puvaa + 5 " (¢ + 0) (¢ + v2)v] + 03, = 0.

(2.9)
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The integration of (2.9) over R4 x (0,t) yields
t /
)
sl + [ { (-5 4 v ) Lo 4 eI o

t o0
< Yool 2 + C / / (Go[v0a] + 02 + [ug[*)ddr.
0 0

(2.10)

Here we have used (2.6). Since the equation (2.2) implies
(2.11) F(u)vg(0,t) = v.4(0, 1),

we can estimate the integral on the boundary as follows:

/Ot (_ f/(;lf)vg _f_Um%)

t
< Yloga(r)|2dr + C / o ()] Pdr.

t
dr < C/ v,(0,7)%dr
0

(2.12) 0

The last term of (2.10) is estimated as follows:

t [e'e) t
c / / oy Pdudr < C / 0a ()12 a7 |7/
0 0 0
(2.13)

t t
< [ oaalDIP+C s (oI [ (o)
0 o<r<t 0

It follows from (2.10)—(2.13) and (2.8) that

t
sup ||vm(T)H2+/ [0ze (T)|[Pd7 < Cwol[T + Cllwol |- sup |[va(7)][*?,
o<r<t 0 o<r<t

which yields
t
(2.14) sup [[v,(7)||? +/ [[vaw (7)|[Pdr < Cllwol 7.
o<r<t 0

The combination (2.8) with (2.14) proves the estimate (2.4).

2.3. Convergence rates to viscous shock wave. First, consider the case (1),
that is, the nondegenerate shock case. Note that f'(u) < —¢; < 0foruy <u<u_ <
0. By Theorem 1.2

sup |v(z,t)| = 0 as t— oo,
Ry

and hence, for any € > 0, there is a positive time ¢; = ¢1(g) such that

(2.15) sup |v(z,t)| <e for ¢>4.
Ry
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Multiplying (2.5) by (z)? = (1 + x)%/2, we have

(“D202), + ()P4 1)a

ptv

(2.16) —Ba(z)’=? {(f(¢ +v) = f()v - </¢ f(s)ds — f(¢)v> - vzv}

Ha)? (f(@ +v) = f(9) = ['($)v)¢s + (x) 07 = 0.
By virtue of (2.15), for sufficiently small eg > 0 and t > ¢ (o),

¢’+v
{(f(¢+v ( s)ds — f ¢)v>}
(2.17)
= 2>

—(f"(¢+ 01v) — 5 f'(¢ + O20))v
The integration of (2.16) over (O o0) x (0,1), t <ti(eg), gives

/ v(z,t) der// d)mv +v YdxdT
0

So?,  where [0;| <1, i=12.

(2.18)
<C (/ Uo dm+/ / v + |vvm)dxd7> ,
0
and hence
¢
(2.19) ()13 +/ o (r)3dr < C(t)lwol3, £ < 1 (co).
0

Multiplying (2.16) by (1+¢—t1)” and integrating the resultant equation over (0, c0) x
[t1,t), we have

(I1+t— tl)’7|v(t)|% —i—/t (1+t— tl)V(ﬁ|v(7)|%,1 + |v$(7)|%)dr
(2.20) < Cllott)+7 [ (47 =0y olr) )
t T—11) ooxﬂ_lvv rdT.
+C/tl(1+ t1) /O ()7 lvvg|ded

The final term of (2.20) is estimated as follows:
(2.21)

t oo
C’/ (1—|—7'—t1)7/ (2)P~Yov, |dedT
t1 0

¢ ¢
Sg/(l"‘T_tl) lo(T )|,3 WA +C | (14+7—11)7 </ / ) Vo lo2dadr
t] tl

t ¢
< %/t (1+T—t1)7(ﬁ|v(7)\%,1+|vw(T)|%)dT+CR/t (147 — 1) Jve(7)]Pdr



BEHAVIOR OF SOLUTIONS WITH BOUNDARY 301

for sufficiently large R. Combining (2.19)—(2.21), we have

(L+t—t:)7|o(t)]? + /t (L7 =) (Blo(n) |51 + |va(T)|F)dr
(2.22) 1

t
< O(Jwol3 + 7/ (147 —1t)" " o(r)|3dr +/ (147 = t1)[[og ()| Pdr).
t1 ty
This basic weighted energy estimate leads to the following lemma, using the procedure
of reduction of Kawashima and Matsumura [2] and Matsumura and Nishihara [10].
LEMMA 2.4. Suppose (1.3), (1.4), and f'(u_) < f'(uy) < 0. Ifvg € H' N L2,
then the solution v of (2.2) satisfies

(2.23) L+ )@ + /01(1 +7)Jva(7)[[Pdr < Cluol2

for any v < a (a:integer) or v < a (a:noninteger).

For the derivative of v in x, we can easily show the similar estimate. Thus we
obtain the following theorem.

THEOREM 2.5 (rate of asymptotics for f'(u_) < f’(uy) < 0). Suppose that (1.3)
and (1.4) hold and that f'(u_) < f'(uy) < 0. Ifug—¢1 € H' N L2, then the solution
u(z,t) of (IBVP) satisfies

(2.24) sup [u(z,t) = ¢1(2)] < Ce(1+ 1)~ F44(|lug — dull1 + [ug — 1),

R

where e = 0 if « is integer and € > 0,C. — oo(e — 0) if a is not integer.
Remark 2.1. Nishikawa [12] has recently improved the result of Matsumura and
Nishihara [10], so we can take e = 0 even for noninteger « by the same method as his.
Remark 2.2. If Vo == [ vo(y)dy = [ (uo(y) — ¢1(y))dy € H? is sufficiently small,
then the reformulated problem

Vit f(00)Ve = Vio = =(f(o1 + Vi) — f(d1) — f'(¢1)V2), z€Ry, t>0,
V(z,0) = Vo(x),
V,(0,8) =0

has a unique global solution V(,¢) € C([0, 00); H?) satisfying

(2.25) sup |V (x,t)] = sup Ju(z,t) — d1(x)] = 0 as ¢t — o0
R +

(see Liu and Nishihara [6]). Moreover, if Vy € L2, then they conclude
(2.26) sup |u(z,t) — ¢y (x)| < Co(1+1t)"2Fe,
Ry

Here, € and C. are same as those in Theorem 2.1. In the present case the assump-
tions Vo € L2 and Vo, € L? 11, which seem to be reasonable, improve the rate of
asymptotics as

(2.27) sup u(z, ) — ¢ (z)] < Co(1+1)"F +,

Ry
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See also Nishihara and Rajopadhye [11].
Remark 2.3. If [ €5 |ug(x) — ¢1(x)|*dz < +o00 for some § > 0, then it also holds
that the solution u(x,t) of (IBVP) satisfies

sup [u(z, t) — ¢ (z)| < Ce™?"t
R

for some positive constant ¢’

Similar considerations for the degenerate shock case (2) corresponding to Remark
2.2 are still available. However, since f’(¢2(z) 4+ v(z,t)) is not uniformly negative, the
procedure for the case (1) in this section is not directly applicable. Without going
into the details we obtain the following decay properties for small data in the case (2)
by the same arguments as in [10].

THEOREM 2.6 (rate of asymptotics for f'(u_) < f'(uy) =0). Suppose that (1.3)
and (1.4) hold and that f'(u_) < f'(uy) = 0. If Vg := [§ (uo(y) — d2(y))dy € H*NL2
and Vo, € L%, for a <2 are small, then the solution u(z,t) of (IBVP) satisfies

sup [u(z, ) — ¢o(2)] < Co(1+ )~ F+2,
Ry

where ¢ > 0 and C. — 00 as € — o0.
3. Convergence to rarefaction wave.

3.1. Reformulated problem in the case of 0 < f'(u—) < f'(ug4). In
this section we consider the cases (4) and (5), that is, 0 < f'(u_) < f’(u4). Since
the asymptotic state ¥*(z,t) = r®(z/t)|r, is not smooth, we construct the smooth
approximation ¢ = v;(x, t)(i = 4,5).

For the case (4) we prepare the following lemma.

LEMMA 3.1. Suppose that (1.3) and (1.4) hold and that 0 = f'(u—) < f'(uy).
Let w(x,t) be a unique smooth solution of the Cauchy problem

wy +ww, =0, xR, t>0,

(3.1) z
w(z,0) = wyo(x) = wy - Hq/o 14y %y, q>1/2,

where wy = f'(uy) > 0 and kg [°(1 + y*) "%y = 1. Then, ¢ = Yy(x,t) =
(f) Nw(z,t))|r, satisfies

7/1t+f(7/1)x:0» $ER+, t>0a

(3.2) ¥(0,t) =0(=u_),
U(x,0) = tao(z) := (')~ (wao(x)) = { B

— Uy, T — +00
and the following:

() 0=u <@t <up, Galmt) >0, (1,1) € Ry x (0,00)
(ii) Forany 1<p<oo there exists a constant Cp, such that
. 1/p,—141
oDl < Cpgmin(u, uy/"t"17),

-2l _p=t

[Ya(®llLr < Cpgmin(uy,u, """ 20m).
(iti)  limy oo supg, [P(z,t) — 5 (x, 1) = 0.
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The proof of Lemma 3.1 is given by the characteristic curve method. See Mat-
sumura and Nishihara [8], [9].
Set

(33) u(z,t) = 1/)4(‘7:,” +U($,t>;
then the perturbation v satisfies

Ut+(f(¢4+v)—f(¢4))m—vmzwzm zeR4y, t>0,
(34) v(0,2) =0,

v(x,0) = vo(z) := vo(x) — Ya0(x).

Our theorem for the case (4) is the following.

THEOREM 3.2 (in the case of 0 = f'(u_) < f'(uy)). Suppose that (1.3) and (1.4)
hold and that 0 = f'(u_) < f'(uy). If vo € H', then there exists a unique solution v
of (3.4) such that

(3.5) ve C([0,00); HY), w, € L*(0,00; H")
and, moreover,
(3.6) sup |v(z,t)] = 0 as t— oco.

+

Theorem 1.2, in the case of 0 = f'(u—) < f'(uy), is a direct consequence of
Theorem 3.2, Lemma 3.1 (iii), and (3.3).

In the case of 0 < f'(u—) < f'(uy), we prepare the following lemma in place of
Lemma 3.1.

LEMMA 3.3. Suppose that (1.3) and (1.4) hold and that 0 < f'(u_) < f'(uy).
Let w(z,t) be a unique global solution of the Cauchy problem

wy +ww, =0, xR, t>0,
(3.7)

w(z,0) = wso(x) 1= LEEY= 4 L= qu/ (1+yH) "y, q>3/2,
0

where wy = f'(ux) > 0 and Ky fooo(l +y?)"9dy = 1. Then, ¥ = v¥s(x,t) =
(f) M w(z,t))|r, satisfies

v+ f(W)e =0, xeRy, >0,
(3.8)

¥(x,0) = so(@) := (f')~  (wso(2)),
and the following:

1) O<u_ <o(m,t)<uy, ¢ul,t)>0, (,)€Ry x (0,00).

11 or any SPSO ere exists a consitan sSuc a

i) F 1<p< th st tant  Cp 4 h that
190 (0)||zr < Cpgmin(fuy — u_|,[uy —u_|[/Pe71F5),

1 p—1

s ®llr < Cpgmin(fus — |, fus —u_|~ 5471 5),
(iii) For some constant C,
[9(0,8) —u_| < Coluy —u_|(1+ (Jus —u_[t)*)=/%,
[¥2(0,)] < Cyluy —u_|(1+ (Juy —u_[t)?)~7/2
(iv) limy e SUPR [(z,t) — ¢?($at)| =0.
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For the proof see Matsumura and Nishihara [8], [9].
The main difference between Lemmas 3.1 and 3.3 is the boundary value (0, t).
The perturbation

(3.9) v(z,t) = u(z,t) — Ys(x, t)

has a “boundary layer u_ — 15(0,¢)” at = = 0:
Ut+(f(¢5+v)_f(w5))x_vxx =Ysez, TER,, >0,
(3.10) v(0,t) = u_ —5(0,1),

v(x,0) = vo(x) := ug(x) — ¥so(x).

However, Lemma 3.3 (iii) shows that u— —5(0,t) € L'(R) and 5,(0,t) € L' (Ry)
in ¢, from which we have the following theorem.

THEOREM 3.4 (in the case of 0 < f'(u-) < f'(uy)). Suppose that (1.3) and (1.4)
hold and that 0 < f'(u_) < f'(uy). If vo € HY, then there exists a unique solution v
of (3.10) such that

(3.11) ve C([0,00); HY), w, € L*(0,00; H")
and, moreover,

(3.12) sup |v(z,t)] > 00 as t— oo.
R

We note that (3.12), together with Lemma 3.3 (iii) and (iv), yields that
supg,, |u(z,t) — i (z,t)] — 0 as t — oo. Hence, Theorem 1.2 in the case of
0< f'(u_) < f'(ug) follows from Theorem 3.2.

In the next section we devote ourselves to the proof of Theorem 3.2. The proof
of Theorem 3.4 is a little bit more complicated than that of Theorem 3.2. However,
it is along the same line and is omitted.

3.2. Proof of Theorem 3.2. We can easily show the local existence of the
solution of (3.4) in the solution space

X,00,T7) ={vecC(o,T);H"), v, € L*0,T;H") and

O v(x,t)|g=0 < +o0 for te€ (0,7] and m e Zi}.

It remains to show the a priori estimates.
PROPOSITION 3.5 (a priori estimate). Suppose v is a solution of (3.4) in X4(0,T).
Then there exists a positive constant C, independent of T, satisfying

(3.13) @I + / (Vs oI + [lo=(P)[})dr < C(l[voll; +1).
Remark 3.1. By virtue of (3.13) we note that

t t
/ vm<o,r>2drsc/ [0 () [|[oe ()l < C({Joo] 2 + 1),
0 0
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Proof. Multiplying (3.4) by v and integrating the resultant equation over Ry x
(0,t), we have

- St + | {A UWu+vr—ﬂw0—fWMMMMMw+H%@dF}dT

t
g%WMP+Anwmvmmvmw.

The maximum principle for v and the Gronwall inequality with (3.14) yield

(3.15) [lo(®)]* + / (I1Vwa(m)o(D)|* + [Joz(N)|P)dr < C(l[voll* +1).
Next, to estimate the derivative of v, we have the relation at the boundary
(3.16) Vg (0,8) = —1,2(0, 1)

from the equation (3.4). With (3.16) we calculate fg o0 %(3.4)1 -vgdrdr and obtain

t
%WAMP+AH%AﬂWW

t o]
S %H’UOJ:HQ + C/ / |¢4mvvmz + Vg Vg + 1/}4$a:’ua:m‘dxd7—
0 JO

(3.17)
t
+ / (=02 (0,7) — 1 (0, 7) )02 (0, 7)dr
0
sc(wMW+1+/|uw4 |2+mz>ﬁmﬁ.
Combining (3.15) with (3.17), we conclude (3.13). 0

4. Asymptotics to superposition of nonlinear waves.

4.1. Reformulation of the problem. Referring to the preceding sections, we
take

(4.1) D3(x,t) := do(x) + Yy(x,t)

as an asymptotic state at ¢t = oo, instead of ¢o(z) + ¥ (x,t), where ¢o and vy are,
respectively, given in Lemmas 1.1 and 3.1.
The perturbation

(4.2) v(z,t) = u(z,t) — P3(z,t) = ulx, t) — do(x) — Ya(z,t)
satisfies the reformulated problem
ve + (f(@3 +0) — f(P3))s — Vaw = F,

(4.3) v(0,t) =0,

v(x,0) = vo(z) = ug(x) — P2(x) — y(z,0),
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where

(4.4) F = —(f"(¢2+ ta) — [ ($2) 20 — (f' (2 + a) — [ (¥4)) sz + Vaza-

Our final theorem is the following.

THEOREM 4.1 (in the case of f'(u_) < 0 < f'(uy)). Suppose that (1.3) and (1.4)
hold and that f'(u_) < 0 < f'(uy). If vg € H', then there exists a unique solution v
of (4.3) which satisfies

(4.5) ve O([0,00); H'), v, € L*(0,00; HY),
and
(4.6) sup |v(z,t)| = 0 as t— oc.

+

The main Theorem 1.3 is a direct consequence of Theorem 4.1. As for the above
theorems, Theorem 4.1 is proved by the local existence theorem with the a priori
estimates. The solution space is

X3(0,7) = {v e C([0,T); H");v, € L*(0,T; H') and

O v(x,t)|g=0 < +oo for te€ (0,7] and m € Z;}.

We will devote ourselves to the a priori estimates in the next section.
PROPOSITION 4.2 (a priori estimates). Suppose that v € X5(0,T) is a solution
of (4.3). Then there exists a positive constant C, independent of T, satisfying

(4.7) lo@)IIF + /H\/% (DI + (o= (P)I})dr < C(llvollf +1).

4.2. Proof of Proposition 4.2. Multiplying (4.3); by v and integrating the
resultant equation over Ry, we have

48) GallP+ | T @ 4 v) — £(@) — F(@)0)Dodr + [fun(1)]]2 = / " Fuds.

(We drop the suffices 27, “3” and “4”.) Since ®, = ¢, + ¢, > 0 and f"(® 4+ v) >
¢o > 0 by the maximum principle, (4.8) gives
/ Fudzx| .
0

d
(4.9) Z @I + Ve @I + ll@* < C

We estimate the last term of (4.9) using (4.4). First,

Cl - /Ooo(f'(é +v) = f'(¢))pavda]

(4.10)
oo F(ug)t oo
§C/ 1/)¢z|v\dx:/ Jr/ =1 + Ir.
0 0 fr(up)t
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By virtue of ¢ < 0,1 > 0, and Lemmas 1.1 and 3.1(ii), we have

f/(uyp)t

< Coupp, ol {loul] '+ [ (—o)uda)

0

(4.11) Pt g,
< 1/2 1/2 -1
< Cllo@|1=va @)[77=(1 + ) /0 T2
< glloa ] + C{(1 + 1) Hog (2 + ) }*3(|lv(®)|* + 1),
and
I < Csupg, 'U+/ o (w)da < Cllo()|[V? e ()] (1+ )"
(4.12) frug)t

< sl + CQ+ )3 (|l + 1)

Secondly, in a similar fashion to (4.11) and (4.12),

Cl - /Ooo(f’(fb + ) = f'(¥)havda|

(4.13)

< YJua ()12 + O+ )7/ + (1 -+ 8) log (1 + )} ([o(@)]? +1).
Thirdly,
(4.14) jgmywmxvdr < e 0]

Substituting (4.10)—(4.14) into (4.9) and integrating it over (0,t), we have the
desired estimate

(4.15) lo()]” +/O (V1@ (M)(7)I1? + [[va(7)[[)dr < C(J[vol[* +1).

Here we have used the Gronwall inequality.
Next, differentiate (4.4); in a:

(4.16) Vot 4+ (f (P +0)V2)e — Vaze = Fo — {(f'(® +v) — [(®)) Py}

By the equation (4.3) with (4.4) we have the relation at the boundary

(4.17) —f (u=)ve(0,8) + Vo2 (0,) = f'(u_)tp2(0, 1) = ¢aa (0, ).

Multiplying (4.16) by v, and integrating it over (0,00), we have
3t l[va O + (=3 f/ (u=)vF + vaava)lo—o + ||vas (1)

ws) < (P e 0,1) = 0 (0,0))0,(0.)

4C [+ ual)o + (1 + @) ensl
0
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By virtue of (4.17) and v,(0,t)? < C||ve(t)]|||ve«(t)|], the integration of (4.18) over
(0,t) yields

RO / 02 (7) |2
§{||U0m||2+1+/000(|\/WU(T)||2+||vw(T)|2)d7—}

e / 00, 7)|[2dr - sup v (0,7)]|*
0 o<r<t

and hence, by (4.15),

t
(4.19) sup ||vz(7)||? +/O 020 ()|[Pd7 < C(JJwol[F +1).

0<r<t

The combination of (4.15) and (4.19) gives a desired estimate (4.7), which completes
the proof of Proposition 4.2.

(11]
[12]

(13]
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SOME OVERDETERMINED BOUNDARY VALUE PROBLEMS
WITH ELLIPTICAL FREE BOUNDARIES*

ANTOINE HENROT' AND GERARD A. PHILIPPIN?

Abstract. In this paper we study three different overdetermined boundary value problems in
R2: a problem of torsion, a problem of electrostatic capacity, and a problem of polarization. In each
case we prove that a solution exists if and only if the free boundary is an ellipse. The techniques we
use rely on classical complex function theory, maximum principle, and some topological argument.

Key words. overdetermined partial differential equation, free boundary, conformal map, ellipse
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1. Introduction. In his reference book on potential theory, O. D. Kellogg [Ke]
has established that the density of charge at any point of an ellipsoid is proportional
to the distance from the center to the tangent plane at that point.

The above mentioned property may also be formulated as follows:

(1) |Vu| = const.h  on 0€,
where u is the electrostatic potential of the ellipsoid

2 2 2
Q::{x:(ac,y7z)€R3 22+y+i<1}7

defined as the solution of the boundary value problem

(2) Au=0 in R*\Q,
(3) u=1 on 09,
(4) uzO(i) as r — oo,

and h = x.n is the scalar product of x with the exterior normal vector of 0€2. This
property leads to the following question: is the overdetermined boundary value prob-
lem (1)—(4) solvable only if Q is an ellipsoid?

We note that the standard methods of investigation in the topics of overdeter-
mined problems, such as, e.g., Serrin’s moving plane method [Se] or even the maximum
principle approach (see, e.g., [We]), may not be appropriate to characterize ellipsoids!

In this paper we are not going to investigate such challenging overdetermined
problems in R3. However we shall analyze similar problems in R?, in order to take
advantage of such powerful tools as the conformal mapping techniques.
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The second section of the paper deals with some overdetermined Saint-Venant
problems. The third section is dedicated to the analogue of problem (1)-(4) in R?2,
and the fourth section to some overdetermined polarization problem. In the fifth
section, we collect some related open problems with ellipsoidal free boundaries in
higher dimension.

2. An overdetermined Saint-Venant problem. Let u be the solution of the
Saint-Venant problem

(5) Au= -2 in ),
(6) u=0 on 99,

where € is a simply connected bounded domain in R?. Assuming ) convex, Makar-
Limanov in 1971 [Ma-Li] has established the convexity of the level lines {v = const.}
of problem (5), (6). His method is based on the auxiliary function

(7) M = u,u; — |Vu|2Au + u[(Au)2 — U U ).

In (7) and in the rest of the paper a comma followed by indices indicates partial
differentiation, and we adopt the usual summation convention on repeated indices.
Using an identity derived in [Ph-Po] we compute

(8) ka = uﬂ-jku,iuJ — 2uu71-ju7ijk in Q,
(9) AM = —2uu7ijku7ijk S 0 in €.

Moreover, we have on 0f)
(10) M = K|Vul?,

where K is the curvature of 9. It follows from (9), (10) that M is positive in £ if Q
is convex, which implies the convexity of the level lines {u = const.}.

Another consequence of (9) is that M is constant in € if and only if €2 is an ellipse.
Indeed we have equality in (9) if and only if w;;, =0, 4,75,k = 1,2, i.e., if and only if
u is a quadratic polynomial in the two variables (z,y).

This section deals with problem (5), (6) overdetermined by the further boundary
condition

(11) K|Vu|® = ¢ = const. > 0 on 9.

From the above remark we infer that (11) is satisfied if € is an ellipse. The next state-
ment asserts that ellipses are the only domains for which condition (11) is satisfied.
THEOREM 1. The overdetermined problem (5), (6), (11) is solvable only if § is
an ellipse.
Obviously we have to show the following implication:

(12) M = const. on 992 = M = const. throughout .

Let us assume that (11) is satisfied, i.e., that M = const. on 9. The outward normal
derivative %—Af must be everywhere nonpositive on 02 since M takes its minimum
there. The conclusion of Theorem 1 would then follow if we succeed to construct a
point P € 99 at which %—Af = 0 in view of Hopf’s second maximum principle [Pr-We].

On the other hand if the conclusion of Theorem 1 is incorrect, there would exist a
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domain €2 for which %—]\T/Lf < 0 everywhere on 0€2. Our proof of Theorem 1 will consist
of showing that the two conditions M = const. on 0§, %—IZI < 0 on 0N lead to a
contradiction.

Let n := (n1,n2) = (cosf,sinf), § € [0, 27) be the exterior normal vector on 9.
Let s denote the arc length on 02 oriented in the anticlockwise direction. Using the

relations

(13) Ugze = —Uzyy, Uyyy = —Uzzy,
Vu
14 - _ 7
and (8), we compute
oM
T =0 VM = |Vl g
(15) = |Vul ™! {taayuy[u; — 3ul] + upyyuq[uh — 3u]},
oM
g =0= _anz + Mynl
(16) = |Vu| ! {umyugc [u? — Sufj] + Ugyyy Uy [3u2 — ufl]} )

The overdetermined condition (11) implies that €2 is strictly convex with a smooth
boundary 0f2. It follows then that the angle 6 between n and the z-axis is strictly
increasing as a function of s on 99Q. Let (2(0),y(0)) be a parametric representation
of 9Q. From (14), (11) we compute

(&' (5),1/(5)) = (&(5), (5)) 5o = (), () K"
(17) = (uy, — uy)|Vu| K = |VulPe Huy, — uy),

where a prime stands for %, a dot stands for %.
Let us now consider the pair of periodic functions ¢;(6), p2(0) defined on 9 as

(18) ©1(0) 1= uge(2(0), y(9)),
(19) ©2(0) == —uay(z(0),y(9)),
6 € [0,27). Using (13), (17) we compute
V 2
(20) @1 (0) = Uppex’ + uwwyy/ = _| i {Uzayus + Uzyyuy},
2
(21) ©5(0) = _uwywx/ - uwyyyl == [Vul {uzayty — Ugyyuz }.

Using the identities

(22) 0820 = cos? 0 — sin® 0 = |Vu| 2 (u2 — uz),
(23) sin 20 = 2sin 6 cos 0 = 2|Vu| 2uzu, ,
together with (20), (21) we obtain

1
(24) ¢} cos 20 — ¢l sin 20 = E{umyugC (3u§ —u2) + Uy (ui —3u?)},

1
(25) @' sin 20 + ¢h cos 20 = E{umyuy (uz — 3u2) + uyyrtg (uZ — 3u§)}.
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Using (15), (16), and assuming M = const. on 9%, %—7]‘{ < 0 on 09, we can rewrite
(24), (25) as

(26) (¢1(0), 92(0)) = a(0)(sin 26, cos 26),
with
(27) a() = %\vu\%‘f <0 Voelo2n).

From (26), (27) we conclude that the closed curve I" given by the parametric represen-
tation (¢1(0), ¢2(0)),0 € [0,27) has its tangent which makes two revolutions around
the origin in the negative direction.

In other words we have

(28) turn (I') = —2,

where turn (T') is the turning number associated with I'. We refer to [Be-Go] for a
precise definition of turn (T') as the degree of the unit tangent map of T

We shall now compute turn (I') using a different approach and obtain a contradic-
tion. To this purpose we consider the auxiliary complex-valued function f(z) defined
in Q as

(29) f(Z) = Uge — iury7

with z := z+iy € Q. We note that u,, and —Ugy are harmonic conjugate functions in
view of (5), (13); i.e., f(z) is analytic and maps 9 onto I'. Let the unit disc || < 1
in the complex (-plane be mapped conformally onto Q2 and denote by z = ¢(¢) the
univalent function associated to this mapping. We obtain a parametric representation
of T in terms of ¢ € [0, 27) by setting

(30) p1(Y) +ipa(1) = f((e™)).

The hodograph of I given by the analytic function
d . - i i i
(31) g (P1 +ip2) = iV () [ ((e))
is a closed curve homotopic to the unit tangent map of I' (parametrized by ¢ +—
ACACAIMCICAD)
¢’ (e¥) f' (¢(e¥))]

) that does not go through the origin since we have

by assumption, and since ¢'(¢) # 0 in {|¢| < 1} by conformality. The number turn
(T') may therefore be evaluated by the integral

L[ POk
(33) o (1) = 52 /{_1 o
with

(34) F(C) == 1i¢o'(Q) f'(¢(0));

turn (I') coincides therefore with the number of zeros (counted with their multiplicity)
of F(¢) in the disc |¢| < 1 and is therefore > 1, in contradition to (28). This achieves
the proof of Theorem 1.
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3. An overdetermined boundary value problem for the electrostatic
potential in R2. Let K be a simply connected bounded domain in R?, and let u be
the solution of the following boundary value problem:

(35) Au=0 inQ:=R*K,
(36) u=1 on 0K,
u
37 li =1
(37) Jn fogr = b

where r := /22 4+ y? is the distance from the point (x,y) to the origin O € K. We
note that u takes its minimum value on K. Moreover, if K is an ellipse, u(z,y) can
be computed in terms of elliptic functions and the following two relations hold on 952 :

(38) x|Vu| = enq,

(39) |Vu| = 6h,

where € is a negative constant, ¢ is a positive constant, n := (n;,ns) denotes the
normal vector on K oriented inside K, and h := —x;n; is the distance from the

tangent of 0K to the origin O € K. In this section we establish the following result.
THEOREM 2. The boundary value problem (35)—(37) overdetermined either by
(38) or by (39) is solvable only if K is an ellipse.
Let Q be the exterior of the unit disc [¢| < 1 of the complex ¢-plane. This domain
) can be mapped conformally onto £ by means of a univalent complex-valued function
¢ — z = ¢(C) of the following form:

(40) $(Q) =aC+> b,
n=0

where a can be chosen real positive. Let @ be the solution of problem (35)—(37)
associated with 2. We have obviously

(41) a(¢) = 1+1logp,
with p := |¢], ¢ := pe™® € . We then obtain the solution u(z) of (35)-(37) in Q by
conformal transplantation of 4(¢). This leads to
u(z) = (¢~ (2)) = a(C) = 1 +log (|
=1

(42) + Relog¢ = 1+ Re{log¢™*(2)}.

The complex gradient Vu := u, + iu, is then given by

(43) Vu=(log¢~(2)) =1/ ¢~ 1(2)¢' (¢~ (2)).

Moreover, the complex unit normal vector n := nj +ins is obtained by differentiating
the parametric representation ¢(e'¥) of 9Q with respect to the parameter 1. This
leads to
, w ¢'(€)
(44) n=ny+ing = —e¥_——— 2L
|¢'(e*?)]
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Combining (43) and (44), we obtain the following expression for the normal derivative

g—z on Of) in terms of the mapping function ¢(¢):

@) S| = Rellur = )+ im)] =

Since u = 1 on 092, we have

Ou 1
w Vo = T T T

With (46) we can rewrite the overdetermined conditions (38) and (39) as follows:

(47) Re{p(e")} = —eRe{eV ¢/ (')}, o €[0,27),
and
(48) Re {e%’(eiw) qs(ew)} = % > 0.

In the next step we shall show that either (47) or (48) implies separately that ¢ has
the form

(49) $(¢) = al +bo + b1 ¢,

from which we conclude that K must be an ellipse.

First case (47). Obviously we can select by = 0 in (40) since this choice affects the
mapping by a translation only. Making use of (40) with b,, = 8, + iy, n =1,2,...,
condition (47) gives

acosy + Z(ﬁn cos n + 7y, sinna)
1

(50) = —¢ {acosw— Zn(ﬁn cosny + p sinnw)} ,
1
from which we obtain
(51) p="0E9 50 vmz2
e _

This leads to the desired form (49) of ¢(().
Second case (48). The analysis of this case is more complicated. The condition
(48) may be rewritten under the form

53 o G (¢) + ¢ (e F) = const

Again we write

(54) $(C) == al+ Y bl"
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without loss of generality. Let us now introduce the associated function

o0

(55) ¢(¢) = ¢ (1/0) =aC™" + ;E@.

With

(56) d(e'V) = ¢(e'?),

(57) #(0 =~z (1]0),

the condition (53) may be rewritten as

(58) e P(e) e () — e p(e)d (™) = const. = c.

Moreover, we know a priori that the overdetermined condition implies that the bound-
ary 0f) is analytic. This follows from Theorem 1.4 in Chapter 2 of Friedman’s book
[Fr]. The function ¢ analytic in [(| > 1 may therefore be analytically extended inside
the unit disc in a neighborhood of |[¢| = 1, and the function ¢ analytic in |¢| < 1 may
be analytically extended outside the unit disc in a neighborhood of || = 1. There
exists therefore a two-sided neighborhood w := {1 — e < |¢| < 1+ €} of the unit circle
in which ¢ and (Z) are analytic. In w we have the identity

Cc

(59) $(0)¢'(¢) — ' (Q)9(C) = ¢

in view of (58). Differentiating (59) we obtain

(60) 60"~ 0=
Combining (59) and (60) leads to
(61) ¢/ — o+ (90" - ¢"9) =0,

which may be rewritten as

¢/+<¢” :Cé/_,'_c(g//
¢ ¢

where the factors ¢ on both sides of (62) make the right-hand side analytic at the
origin since we have

(62) ¢

in w,

(63) im ¢ 29"

¢—0 1)
as a consequence of (55), and the left-hand side bounded at infinity since we have

(64) lim ¢ Fee” _

1
¢—o0 1)

as a consequence of (54). The identity (62) shows in fact that the function defined by

¢ ¢l+¢<¢” outside the unit disc and by ( ¢’+<§¢” inside the closed unit disc is analytic
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and bounded in the whole complex (-plane. It then follows from the classical theorem
of Liouville that this function is constant (and equal to one, thanks to (64)). This
fact leads to the following differential equation for ¢({):

(65) o'+ —op=0  V[(>1L
The differential equation (65) has the general solution
(66) ¢(¢) = aC +b¢™"

This achieves the proof of Theorem 2.

4. An overdetermined polarization problem. Let K be a simply connected
bounded domain in BZ. We consider the polarization problem in the z direction
defined in Q := R*\K as

(67) Au=0 inQ:=RA\K,
(68) w=z+b onaq,
(69) u=00"") asri=+a2ty? — .

In (68), b is a constant that is uniquely determined by the condition (69). In this
section we establish the following result.

THEOREM 3. Let u be the solution of problem (67)—(69). Assume moreover that
u satisfies the further boundary condition
(70) % =cny  on 09,
where n = (ni,ng) is the unit normal vector on OQ directed inside K and where
c 1s a constant. Then K must be an ellipse whose axes are parallel to the axes of
coordinates.

Before proving Theorem 3 we note that the constant ¢ in (70) cannot be given
arbitrarily. In fact ¢ depends only on the geometry of K and is given by

2
Joon3 x.1ds

(71) c= < 0.

o 2
Joqnixnds

For the proof of (71) we compute

(72) / |Vu|2d$ = / u@ds = c/ xnlds — —CA7
Q oQ on 50

where A is the area of K. (72) implies that ¢ is negative. Moreover, from (70) we
have

O(u — )
on

Inserting (72), (73) into Rellich’s identity

(74) /Q\Vu|2dx +A= f% /09 <8(u8;x)) x.nds

that is also derived in [Pa-Ph], we obtain (71).

(73) =(c—1)n; on 9.
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For the proof of Theorem 3 we proceed again by conformal transplantation. Let
Q) be the exterior of the unit disc |¢| < 1 of the complex (-plane; Q may be mapped
conformally onto 2 by means of a univalent complex-valued function ¢ — z = ¢(({)
of the following form:

(75) $(C) =al+ Y buC",

n=0

where a may be chosen real positive without loss of generality. Let @(¢) be the
transplanted function defined in € as

(76) a(¢) == u(¢(¢))-

This function 4(¢) satisfies the following boundary value problem:

(77) Ad=0 inQ,
(78) a(e") = u(d(e™)) = Re(gp(e")) +b, 1 € [0, 2],
(79) 12:0(|2|) as |¢| — oo.

In (78) we have used the notation ¢ = pe’¥. From (79) we see that b = —Re(by). The
solution of (77)—(79) is easily computable. We find

a(¢) = ape™)

=1
Lfa+br iy atbi i = bue ™ 4 bye™”
(80) =5, e e +y :
2

p?’L

Since we have a = a, (80) may be rewritten as

(81) a(¢) = Re <Z> + Re (i an”> — Re {Z +6(¢) — al — bo}

in view of (75), from which we compute

(82) u(z) = ﬁ(gb*l(z)) = Re {¢—?(z) +z— aqﬁfl(z) — bo} )

Using the identity V{Re f(z)} = f’(z) with f(z) analytic, we compute from (82)

a a
(o7 (2)[¢ (2> ¥(71(2))
The complex-valued normal vector n := ni +iny of 92 may also be expressed in terms
of the parametrization ¢ — ¢(e'¥), ¥ € [0,27) of 9. We obtain
" ¢/(€iw)
¢/ (e?)]

(83) Vu(z) = up —iuy =1 —

(84) n=ni+ing = —¢é

From (83), (84) we compute

du(p(e™)) _ . =
—5, = Re{Vu.n}
N C ac'”
(83) = re{ - et )
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The overdetermined condition (70) may therefore be rewritten as
(86) Re{e™¢' (') — ae™™ — ae™'} = Re{ce™ ¢'(e')}.

From (75) we compute
(87) eV () = ae™ an e,

From (86), (87) we obtain by identification

—acost — Re(by) cosp — Im(by) sinep

(88) = c(acost) — Re(by) costh — Im(by) sine))
and
(89) Re(nb,e™ ") = cRe(nb,e~ "), n>2.

Equation (88) gives

c+1
90 by =
(90) T
Since ¢ # 1, we obtain from (89)
(91) by =0, n>2.

The above computation shows that the mapping function ¢(¢) must have the partic-
ular form

c+1a
c—1¢’
which implies the desired result. We finally note that K is a disc if ¢ = —1.

(92) $(¢) = aC +bo +

5. Some open problems. In this section, we want to indicate some open prob-
lems which generalize in three dimensions the problems studied in the previous sec-
tions. In what follows, €y will denote the ellipsoid

Qo—{X— T,Y, 2 /++<1}

with @ > b > ¢ > 0. The distance h from the tangent plane of 9€ to the origin is
given by

2?2 22 —1/2

and the Gaussian curvature G of 0€) is given by
(94) G = h*/a*b*c?.

Of course, the problems described below have analogous N-dimensional versions which
could easily be formulated.



OVERDETERMINED PROBLEMS WITH ELLIPTICAL BOUNDARIES 319

The Saint-Venant problem. Let u be the solution of the Saint-Venant problem
(5), (6) in Qp. We have

3}‘2 y2 22
2 2 2
2 2 X Yy z
(96) V2 = 44 (a4 + ot C4> :

with A =-2(% + % + %)L, It follows from (94), (96) that
(97) |Vu|* G = const. on 9.

It is then natural to state the following problem.

Open problem 1. Let u be the solution of the Saint-Venant problem (5), (6) in
Q, where  is a regular bounded, simply connected domain in R?. Assume moreover
that the overdetermined condition (97) is satisfied where G is the Gaussian curvature
of 9. Then prove that Q is an ellipsoid.

The electrostatic potential problem. Let u be the electrostatic potential of the
ellipsoid g, i.e., the solution of the boundary value problem

(98) Au=0 inQ:=R3\Q,
(99) u=1 on 09,
(100) |Vu| = O(r=?) asr — oo.

Using ellipsoidal coordinates, we are able to write u explicitly as

*° dt
101 =
( ) U(x7yaz) /)\ {(a2 + t)(b2 + t)<C2 + t)}1/27
where A is the largest root of the equation
2 2 2

e Ly 2
a?+X BP4+A A+ N
We refer to [Ke] for the derivation of (101). From (101), it follows that

1.

(102) x|Vu| = enq,
(103) |Vu| = 6h

on d{)y as in the 2-dimensional case, where € and 6 are constants. Therefore, we can
state the following problem.

Open problem 2. Let K be a regular simply connected compact set in R3. Let u
be the electrostatic potential defined as the solution of (98)—(100) in R3\ K. Assume
moreover that u satisfies either the overdetermined condition (102) or (103). Then,
prove that K is an ellipsoid.

The polarization problem. Let u be the solution of the polarization problem for
the ellipsoid

(104) Au=0 inQ:=R*Q,
(105) u=x+b on 9,
(106) |Vu| = O(r?) asr — oo.
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Using ellipsoidal coordinates, we are again able to write u explicitly as (see [Sc-Sz])

ZE/"O dt
p Sy (@@ +0){(a®+ )07 +t) (2 +1)} /2

where p is a constant determined by the boundary condition. It follows from (107)
that

(107) u(z,y,z) =

ou
108 — = t.
(108) 5, — const-ny
on 0y as in the 2-dimensional case.
Open problem 3. Let K be a regular, simply connected compact set in R3. Let u
be the solution of the polarization problem (104)—(106) in R\ K. Assume moreover
that u satisfies the overdetermined condition (108). Then, prove that K is an ellipsoid.
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ON A FOURTH-ORDER DEGENERATE PARABOLIC EQUATION:
GLOBAL ENTROPY ESTIMATES, EXISTENCE, AND
QUALITATIVE BEHAVIOR OF SOLUTIONS*

ROBERTA DAL PASSO!, HARALD GARCKE?, AND GUNTHER GRUNS

Abstract. By means of energy and entropy estimates, we prove existence and positivity results
in higher space dimensions for degenerate parabolic equations of fourth order with nonnegative initial
values. We discuss their asymptotic behavior for ¢ — co and give a counterexample to uniqueness.

Key words. fourth-order degenerate parabolic equations, existence, regularity, long-time be-
havior, thin films
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1. Introduction. In this paper we will present new results on existence, (non)
uniqueness, positivity, and asymptotic behavior in higher space dimensions of weak
solutions to degenerate parabolic equations of fourth order of the form

uy + div(m(u)VAu) =0 in Q x (0,7,
ou 0
(1.1) E—aAu—O on 09 x [0,T7,

u(0,-) = up(-) in Q.

We assume that the nonnegative diffusion coefficient m vanishes at zero and has
at most polynomial growth. We denote by n its growth exponent near zero.
Equation (1.1) can be seen as the archetype of a class of parabolic equations of higher
order which appear in material sciences and fluid dynamics. For instance, in lubrica-
tion theory (cf. [3], [8] and the references therein), u describes the height of a viscous
droplet spreading on a plain, solid surface; in the Cahn—Hilliard model of phase sep-
aration for binary mixtures, u plays the role of the concentration of one component
(cf. [10]), and in a plasticity model (cf. [13] and the references therein) u stands for
the density of dislocations.

Crucial for these applications is the fact that it is possible to construct solutions
of (1.1) which preserve nonnegativity as has been proved for space dimension N = 1
by Bernis and Friedman [6] and for higher space dimensions in the papers by Griin
[13] and by Elliott and Garcke [10]. This behavior is in strong contrast to that of clas-
sical solutions to linear parabolic equations of fourth order which in general become
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negative even in the case of strictly positive initial values. Moreover, the publications
of Beretta, Bertsch, and Dal Passo [2] and of Bertozzi and Pugh [8], who study this
equation in space dimension N = 1, reveal a rich structure of qualitative behavior
of solutions depending on the diffusion growth exponent n. To put it concisely, the
larger n is, the stronger is the tendency of solutions to stay positive and the weaker
is the regularity at the boundary of the set where u vanishes.

Recently Bernis [4], [5] showed for the special case m(u) = u™ with 0 < n < 3 that
in space dimension N = 1 solutions to (1.1) have the property of finite speed of prop-
agation. More precisely, this means that the interface separating the regions where u
is positive and where u is equal to zero moves with finite velocity as time progresses.
To obtain these results Bernis used local versions of entropy estimates first derived
in [2].

While in the case of higher space dimensions existence results up to now were
restricted to the cases 1 < n < 2 if ug > 0 arbitrary, and n > 1 if ug is strictly positive
(cf. [13] and [10]), the results presented here will overcome this restriction and assure
the existence for % < n < 3 and arbitrary nonnegative initial values ug. It turns
out that in general we cannot expect solutions to have L?(0,T; H?(f2))-regularity.
In previous works (cf. [13] and [10]), this property has been a major ingredient in
the definition of solution. Thus, we are forced to introduce a new solution concept
that—to put in concisely—differs from the previous one in such a way that in the
corresponding weak formulation of (1.1) derivatives of u of higher order than 1 do not
appear. For the technical details, we refer the reader to the statement of Definition 3.1.

Let us point out that the growth exponent n = 3 seems to be a border case
in the theory of degenerate fourth-order parabolic equations. This already has been
indicated by results of Bernis, Peletier, and Williams [7], who showed that source-type
solutions with finite mass only exist for 0 < n < 3.

Technically, the restriction to values of n < 3 in this paper is due to the fact that
entropy estimates for compactly supported initial data are not achievable if n > 3.
For similar reasons the results of [4], [5] and many of the results of [2] and [8] are
restricted to n < 3.

Our work will be based upon a refinement of those entropy estimates which have
been used in [13] and [10]; they generalize results of the papers [2] or [8] to space
dimensions N = 2, 3, which are the relevant ones for applications. Since in the case of
higher space dimensions it is still not known whether solutions of (1.1) are in L™ ()
or whether they are strictly bounded away from zero in case of positive initial values,
a more careful approximation process has to be applied than for space dimension
N =1.

Another important ingredient in the higher dimensional case which may be of
independent interest is the generalization of the formula of integration by parts

1 1
[ fwnunds =4 [ wutds
0 0

for appropriately smooth functions with u,(0) = u,(1) = 0 to higher space dimen-
sions, which will be essential in order to obtain the entropy estimates (cf. Lemma
2.3).

Confining ourselves at the moment to entropy estimates global in space, in a
forthcoming paper we wish to derive local versions of the entropy estimates and we
hope to show results analogous to those of Bernis [4], [5] in higher space dimensions.

Let us briefly describe the outline of this paper.



DEGENERATE PARABOLIC EQUATIONS OF FOURTH ORDER 323

In section 2 we state the refined entropy estimate first for auxiliary problems with
positive initial values and sufficiently large diffusion growth exponents n. In a second
step, we extend this result to arbitrary positive values of n by use of an appropriate
approximation method.

Section 3 contains the main results of this paper. In Definition 3.1 we introduce
the solution concept, in the framework of which we can prove existence of solutions
for § <n < 3 and arbitrary, nonnegative initial values ug € H'(Q) (cf. Theorem 3.2).
As a consequence of the a priori estimates derived so far we improve the results of [13]
about positivity of solutions (cf. Theorem 3.4) and show convergence to the mean
value for t — oo with respect to the H'-norm (cf. Theorem 3.5). The latter result can
be used in order to discuss the problem of uniqueness in the framework of the solution
concept. By constructing steady state solutions with compact support which do not
satisfy the entropy estimates but nevertheless solve the equation in the sense of the
solution concept, it becomes evident that we cannot expect uniqueness of solutions
without imposing regularity properties at the boundary of the set where u vanishes.
Whether these regularity properties are already sufficient for uniqueness still remains
an open problem.

Notation. In the whole paper we assume that 0 C RY (N € {2, 3}) is an open and
bounded domain with boundary of class C1* (or C%! if Q is convex) which is piecewise
smooth. We denote by I the time interval (0,7), and Q7 stands for the space-time
cylinder 2x (0, 7). We denote by v the unit outer normal vector to 92, and I1(.) is the
second fundamental form of 99). By H2(2) we denote {u € H*(Q) : Zu = 0 on 9Q}.
We will use as abbreviation the notation v € LP~(Q) to indicate that v € L(Q)
for all ¢ < p. Furthermore, £ denotes the N-dimensional Lebesgue measure and
HN~1 denotes the (N — 1)-dimensional Hausdorff measure. For vectors v,w € RV
and symmetric matrices A € RY*N | we write (v, A, w) instead of Z” v;A;w;, and
(-,-) stands for the standard scalar product on RY.

2. Entropy estimates. In this section we will present the entropy estimates
essential for the qualitative results. For mainly technical reasons we shall confine
ourselves at first to a special case of problem (1.1) that is characterized by the following
additional conditions on the diffusion coefficient m and on the initial data ug.

(A1) The diffusivity m € CH(RF) N WL (RY) can be written as m(r) = 77 -
f(r) (r € R{) with a positive function f such that ||fHCl,1(RO+7R3) < oo. Further-
more, we assume that m is uniformly bounded from below by a positive constant for
sufficiently large values of 7.

(A2) The growth exponent n satisfies

4 if N =2,
> .
8 if N=3.
(A3) The initial data ug € H*(£2) are strictly positive; i.e., there exists a constant
6 > 0 such that ug > 6 > 0.

In [10] and [13], it has been proved that under the assumptions (A1)—(A3) there
exists a pair of functions

(u,J) € H (I;(H'(Q))) NL>®(I; H'(Q)) N L*(I; HX(Q)) x L*(Qp,RY)
which solves (1.1) in the following weak sense:

(2.1) uy = —divJ in L*(0,T;(H"'(Q))")
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and
(2.2) /QT Jon=— /QT Audiv(m(u)n)

for all n € L?(0,T; HY(Q,R™)) N L*(Qr, R™).
Moreover, for a positive constant C' the following estimate holds true:

(2.3) /u(T)2_"dx+/ |Au|2dxdt§C’/ uz""da .
Q Qr Q

In particular, this implies that u is strictly positive for almost every ¢ € I (cf.
[13]). This positivity property is the key to the following lemma assuring that under
the assumptions (A1)-(A3) VAu(t) € L*(Q) for almost every ¢ € I, and therefore
J(t) = m(u(t))VAu(t) in L*(Q) for these t. As a further consequence, we show that
the L?-norm of Vu is monotonically decreasing, which will be important to obtain
our results regarding asymptotic behavior.

LEMMA 2.1. Assume (A1)—(A3) and let u be the weak solution of (1.1) constructed
as described above. Then for almost all t € [0,T] we have u(t) € C(Q) (for B > 0
appropriately small), u(t) is strictly positive, and

(2.4) J(t,-) =m(u(t,-))VAu(t,-) € L*(Q).

In addition, for almost every ti,to € I the following estimate is true:
1 2 t2 2 1 2
(2.5) = [ [Vu(t)|” dz + m(u) [VAu|" dedt < = | |Vu(t)|” dx.
2 Ja 6 Ja 2 Jo

The proof of Lemma 2.1 is contained in the Appendix at the end of this paper.
We now state the main entropy estimate. As in papers [2] and [8], we define the

entropy to be Gy (t) = f; IR % drds. Here, A is an arbitrary but fixed positive
constant.

PROPOSITION 2.2. Assume (A1)—(A3) and let u be the weak solution of (1.1)
constructed by the method of [10] and [13]. Let o and v be real numbers satisfying
% <a+n<2,

(2.6) IV ¢y ¢ VDA it = atn

and v € (3,1) if « +n < 1. Then we have
(2.7) / Go(u(T)) dz + Cfl/ w3 | V)t dadt
Q Qr
+ 0;1/9 w2 L2 (D2 o 3 A} dadt
T
< / Ga(uo)deng/ w®T L dadt.
Q Qr

Here, C1 and Cs are constants only depending on the domain €; in particular,
C5 becomes zero if ) is convez.

Proof. The proof essentially consists of three parts. In the first one we introduce
regularized versions of G, (u) which we use as test functions in the weak formulation of
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equation (1.1). The main difficulty is to control the term containing spatial derivatives
which we will henceforth call “elliptic part.” To estimate this elliptic part, we at first
only formulate a key inequality which allows to pass to the limit with some regularizing
parameters (cf. part 2) and thus to establish the result. The last part will be devoted
to the detailed verification of that particular inequality.

Part 1. Consider for positive parameters A, o the functions

s (T+ 0)a+n—1

(2.8) oo () ::/A ) dr
and
ratn—1
(2.9) gl (s / M) £ ora 1) dr .

If o +n < 1, we choose g_,(u+ ¢) as the test function in (2.1), (2.2); otherwise
we choose gt (u + ¢) and obtain, using Lemma 2.1,

(2.10) / (up, g5, (u+¢)) dt = / / w)VAu, Vg (u+e)) dudt.
0

The nonnegativity of u, the shift by e, and the L*(I; H'(Q))NL?(I; H*())-
regularity of u guarantee the admissibility of these test functions. We notice that the
functions GZ_, defined by

o)

£ (s):= T T)dr
(2.11) G, (s) /A 6%, (7) dr,

are nonnegative and convex, that for fixed & > 0 their derivative g has at most
linear growth on [e,00), and that for this reason we obtain (cf. [13, Lemma 2.6])

T
(2.12) /0 (up, g5, (u+¢)) dt = /Gaa u—l—s)(T,x)da?—/QGio_(uo—i—s)(x)dm.

In what follows, we shall make the calculations explicit only for g (i.e., a+n <
1). But by minor modifications the same strategy will work also in the case a+n > 1.

Part 2. For almost all ¢ € I the following inequality offers an estimate for the
elliptic part (we set Beq (u) := (u + € + o)*t"~1 for short):

(2.13)
—/Qm(u)VAqu;a(u +e)

2/951(U) [Dz((qus)”)]2 +/QSQ(U) [A((que)”’)]2 +/QSg(u)|Vu|4

- / (61 + ) (w+ 2+ o)™ [Vul' + Sp(ut &+ 0) T (u + £) 72| Vul*)
Q

—63/ ’DQ(u—i—e—i-a) ~ 5 / Beo (u <u(+)€>—1) | Au|?

_7/ﬁ80' |Au|2< ) —C@/(u—l—e—&-a)‘”"“
Q

= I+I1+- - - +VIII

o<+n+1
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with 6; > 0 arbitrary, C' > 0 independent of ¢, and

Si(u) = 377 Beo(u) - (u+)*7,
Sa(u) = 577 Beo(u) - (u+€)*™%7,
Ssu)=1-7)(y—3%) w+e+0)*™" 1 (ute)™?
—t(a+n—1)(a+n—-2)(u+e+o)*"?
(u+e+o)rtn=2
(u+e)

+3(1 -1 -a-n)

Before we prove the above inequality in part 3, we show that this inequality gives
the assertion of Proposition 2.2.

Consequences of inequality (2.13). Observing that the first and third term in
S3(u) are positive and that o > 0, we have that Ss(u) > 0 if

c(ayn,y):=(1-9) (y—3) —sl@a+n-1)(a+n-2)+31-7)(1-a—-n)

is positive, i.e., if (2.6) is true.
Then, choosing 81, 62, 63 sufficiently small, the terms IV and V in (2.13) can be
absorbed in I, II, and III. In addition, we have the following:
e The integrand on the left-hand side is in L' (Q7).
e As a consequence of the L?(I; H%(Q))-regularity of u, the integrands in the
terms VI, VII, and VIII are uniformly bounded in L*(Q7).
e The integrands in the terms I, II, and III are nonnegative.
This allows us to integrate over the whole space-time cylinder and to obtain from
(2.10), (2.12), and (2.13) the existence of positive constants C; and Cy independent
of € and o such that

(2.14)
/ Goo(u+ o) +Ci? / (ute+0)° 3 |yl
Q

Qr

O [ Brot) tuk e {3 [P (ko) At o))

S/GQU(UO+E)+C~’2{/ (u+ e+ o)>tntl
Q o

o et {5 -1 (552) )

Passage to the limit ¢ — 0 in inequality (2.14). From the L2(I; H*(Q))N
Lo (I; HY(Q))-regularity of u, the uniform boundedness of 3., (1), and Lebesgue’s the-
orem, we infer that the second term on the right-hand side converges to [, u®**t"+!
and that the last term on the right-hand side tends to zero. Since ug > 6 > 0 and
ug € H*(Q2), a further application of Lebesgue’s theorem gives that [, Gao(uo + €)
converges to fQ G oo (ug) for e — 0.

Since the third term on the left-hand side can also be written in the form fQT |V (u+

a+n+1 at+n+l ‘4

e+o) i |*itisobviousthat [, [V(uto) s
£+ 0)tn=3 |Vu|*. Similarly, the second term on the left-hand side can be handled,

is dominated by lim inf._.q fQT (u+
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and by use of Fatou’s lemma we derive
(2.15

)
Goo (u(T)) d + Cfl/ (u+ o)t 22 {% ’D2u”]2 +3 |Au7|2} dxdt
Q Qrp

+ C’fl/ (u+ o)+t 3 |Vul* dadt
Qr

§/Gaa(u0)dx+C2/ (u + o)t dadt .
Q Qr

Passage to the limit o — 0 in inequality (2.15). An application of Fatou’s lemma,
the monotone convergence theorem, and the same methods to estimate limits of gra-
dients of powers of u as used before gives the following result:

/ Go (u(T)) dz + C7* p =2y {% |D2u'y|2 + 3 |Au'y|2} dxdt
Q

Qr

(2.16) +o7t / w3 Vot dedt
Qr

< / Go(ug)dx + C’g/ w T dadt
Q Qr

Part 3. (Proof of inequality (2.13)). Integrating by parts and using % =0 on
0f), we obtain

—/Qm(u) VAuVyg,,(u+e) dxz/ﬂdiv( m(uw) Beo (1) Vu) Audz

m(u+ ¢)
_ /Q <m7(7;(i)8) 55(,@)) |Auf® dz+ /Q (m:b(j-)s) ﬂw(u))u|Vu|2 Audz =: L+15.

For I; and Iy we calculate

m(u)

I, = /Qﬂw(u) |Aul? der/Qﬂw(u) <m(u+€) - 1> |Aul® dz = I} + 12,

e J{ GRS - ) e
m(u)

m(u + €)
=1+ 15

(a+n—1)(u+e+ J)‘”"_?} |Vul|® Au dz

Observing the existence of a constant C' independent of € with the property

n—1
U €
_C.<u+a> (u+¢)?’

Ik >- - 1 Vuf? | Au ——d
§2=C [ Blwute) [Vl || o

’ m'(u)  m(u)m’(u+e)
m(u+¢) m(u + €)?

the term I3 can be estimated as follows:

~ 2
>t [ Ao wul' do = £ [ powau? () ae
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We now write I3 as

I2=(a+n-— 1)/(u+6+0)0‘+”*2 |Vul®> Audz
Q
m(u)

+(a+n—1)/

(u+€+0)a+n—2 (
Q
= Ri + Ro.

—_— 1) Vul|® Audz
m(u + €)

Rs can be estimated as
Ry > —6; / (u+e+0)*t" 3 | Vul* do
Q

mu) __ 2u2x
) 1> |Auf? da.

a+n—1
(u+e+o0) <m(u+5

_EQ

To proceed further it will be worthwhile to state a formula of integration by parts
that generalizes the one-dimensional formula

1 1
/ f(u) - ul - g, dmz—%/ f"(u)-utde  if ug(0) = uu(1) =0
0 0

to higher space dimensions.
LEMMA 2.3. Let f € W2°(R) and u € H2(2). Then we have

/ F(u) | Vu)® Aude = —%/ 7 (w) |[Vu|* dz
Q Q
+§ (/Q flu) ’Dzu’2 dx —/Qf(u) |Au|2 da;)
+2 [ F)II(Vu)dHN
oN

Here, 11(-) denotes the second fundamental form of 0S.
For a proof of Lemma 2.3 we refer to the Appendix.
Now, setting f(u) = Ber(u) and using the identity

Dyo;v =7 0" Dyp,v” — (v = 1) v~ Dyv Dyjv

for v = u + ¢, Ry reads as
Ri=—3 /Q Bl (u) |Vul* + 3772 /Q Beo(w) (u+2)*7 {[D2(u+ )]~ [A(u+2)]2 )

420 =1) [ Palw) (007 A Va4 30 = 1) [ (et 27 Bualu)), [V’

Q Q
+2 [ Beo(u) II(Vu) dHN 1.
a0
For I} we obtain

Ill =72 /Q Beo (1) (u+ 6)2_2"’ [A((u + 5)7)]2 —2(y-1) /Q Beo(u) (u + E)_l Au \Vu\z

_(7 - 1)2/Qﬁ50(u) (u + 5)_2 ‘VU|4 .
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Summing up, we finally arrive at
Il + Ry = / S1(u) [D2((u+5>'v)]2 dz +/ Sa(u) [A((u+5)v)]2 dx
Q Q

(2.17)
+ / Si(u) [Vul' da + 2 / Boo (u) I1(Vut) dHV

Q a0
with Sq(u), S2(u), and Ss(u) as in (2.13). Collecting all the terms, (2.13) will be
established, provided we can estimate the boundary term accordingly.

Let us remark that convexity of €2 implies the nonnegativity of the last term on the
right-hand side in (2.17). Hence in this case we can neglect it for our a priori estimates,
and in particular the last term on the right-hand side of (2.13) cancels out. Let us
now concentrate on the case that (2 is not convex. First we state an interpolation
inequality that easily can be proved by contradiction using the compactness of the
imbedding H'(Q2) — L?(02) which holds true for domains with Lipschitz boundary.

LEMMA 2.4. Let Q be of class C%'. For each € > 0 there exists a constant
C. < oo such that we have, for all v € H?(Q),

[Vl 200) < € ||D2v||L2(Q) + e vl 2q) -

Since 01 is of class C'*! we can conclude that the second fundamental form of 92
is uniformly bounded. Thus we have to estimate [, Beo (u) [Vu|? dHN'. Choosing
a function ®., : R — R with ®., = /B, and applying Lemma 2.4, we obtain, after
straightforward calculations,

/ Beo(u) |Vul* dHN ! < 53/ |D2<I>sg(u)|2 dx + 053/ |® o ()| da.
o0 Q Q

at+n+1

Using the relation ®.,(u) = const-(u+ & +0)“ 2, we end up with

a+n+1 2

[519) Q

dxr

— Cs, / lu+e+o|* T da.
Q

This proves estimate (2.13) and therefore Proposition 2.2. O

Our next goal is to establish entropy estimates in the spirit of Proposition 2.2 for
diffusion coeflicients m which are bounded from below by positive constants for large
values of 7. We distinguish two cases:

(i)

(2.18) m € CHRT) N W(1, 00) with n > 0 arbitrary

and (ii)

(2.19) m(r) = |r|" - f(r)  with n > 0 arbitrary if N = 2,
O<n<4 if N =3,

(2.20) feC*R,RT)NL>®R,RT).

We shall proceed as follows: for a special choice of mobilities (ms)s=o which
approach m from below we obtain entropy estimates by use of Proposition 2.2.
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A compactness lemma which offers all the convergence properties necessary for
passing to the limit with § \, 0 will be crucial. It reads as follows.

LEMMA 2.5. Let (us, Js)s~0 be a family of pairs of functions having the following
properties:

(i) (u
(i) (s

(iii) (us)s~o0 are nonnegative and for a number 3 € (
(u ’g s~o is uniformly bounded in L?(I; H?(12)),

(iv) (us)s~ o is uniformly bounded in L (I; HY()).

Under the assumption that q <
LQ(I,Hl(Q)).

Remark. In dimension N = 2 there exists for every n > 0 a real number ¢
in agreement with (i) which satisfies ¢ < 2%. In dimension N = 3 we need the
condition n < 4, unless (Js)s~ o is uniformly bounded in L?(Q7). The assumption
[CRS ( T 2) is not the most general condition one could impose, but it is nevertheless
sufficient for our applications.

Proof of Lemma 2.5. It mainly consists of three steps.

(1) There is a constant C' > 0 independent of § > 0 such that

t = *le J§ mn LZ( ; (Wl Q(Q))/) Vq > m,

s~ is uniformly bounded in L?(I; LY Q) V¢ < m,

3 3
2

+ ) we have

5)
)
)
)

2 2, the family (u?)(s\o is relatively compact in

T—h
(2.21) / / (u?(t +h,x) — ug(t, ) (us(t + h,x) — us(t,z)) dedt < C - h.

To prove this assertion we choose as the test function in the weak formulation of
(us); = —div Js the function ¢(¢,z) = (u?(s + h,x) — u?(s, )) * Xis,s+h) (t) Which is
admissible. Integrating over [0, 7] with respect to t and over [0,7 — h] with respect
to s, we arrive at

T—h
u?(s +h,x) — u?(s, z)) (us(s + h, ) — us(s,z)) dsdx

T—h ps+h

Js(t,x) - V(u?(s + h,z) — uf(s, z)) dadtds
Q

T—h  h
S/O /0 [Js(s+ 7 )l - HV(u?(s—Fh,.)—u?(s,.))quTds

h
= 2/0 ||J6||L2(L”/) ’ ||vuﬁHL2(Lq)d7' <2.-C:h

(2) A subsequence of (u?)g\o converges to u” strongly in L' (7).

In order to derive (2) we observe that

(a) us — win L?(I; H*(2)) according to (iv),

(b) (uf )50 is uniformly bounded in L (I; L'(Q)) (cf. iv),

(¢) (2.21) holds true.

With the notation b(u) = u® and B(u) = ﬂf_luﬁﬂ we can apply the following
lemma (for a proof, see Alt and Luckhaus [1, Lemma 1.9]) in order to establish the
result.

LEMMA. Suppose that (us)s~o is a sequence which converges weakly to w in the
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space L ((0,T); WHT(Q)) and satisfies the estimates

T—h
/O /Q<b<u5<t 1)) — blus () (us(t + ) — us(t))dt < C

S =

and
/ B(us(t)) < C for0<t<T,
Q

uniformly with respect to 6. Then b(us) — b(u) in LY (Qr) and B(us) — B(u) almost
everywhere.

Let us remark that in the case ¢ = 2 this convergence result could have been
deduced directly by using u; € L?(I; (H'(Q))’) and v € L>=(I; HY(Q)).

(3) From Fréchet—Kolmogorov’s theorem and (2) we infer that

I
hli% u5( + ) u&( ) Ll(((),T_h),Ll(Q))

uniformly for § > 0.

We then apply the following theorem due to J. Simon.

THEOREM (see [14, p. 84]). Let X C B C Y with compact imbedding X — B and
1<p<oo.

If F C LP(I; X) is bounded and || f(-+ h,) = f()ll oo, 7—n,y) — O uniformly for
f € F as h— 0, then F is relatively compact in LP(I B).

With the choice p = 1, X = H%(Q), B = H'(Q), and Y = L'(), we obtain
at first that (uf)é\o is relatively compact in L1 (I; H'(Q)), and then with (iv) we
immediately obtain the assertion. 1]

Let us now specify the auxiliary diffusion coefficients ms which we want to use in
order to obtain entropy estimates analogous to Proposition 2.2. We consider two cases.
At first we study the case when m is bounded, but we allow the growth exponent near
zero to be arbitrary. Having shown convergence of approximating solutions in this
case, we are in a position to investigate situations where m has polynomial growth at
infinity. Thus, the auxiliary diffusion coefficients read as follows.

(1) If m is bounded (like in (2.18)), we choose
(1) T m()
2.22 =
(2.22) ms (7) dm(r) + 78"’

with sufficiently large s to apply Proposition 2.2.
(2) If m has polynomial growth, i.e.,

(0,00) if N =2,

(2.23) m(r) = |r[" - f(7) with n {(0,4) if N =3,

and f as in (2.20), then we choose

n

f(7).

(2) T
ms (1) = 1775 I

This leads to the following auxiliary problems:
( ) + div(mgi)(uéi))VAugi)) =0 in Qp,
ul = 2 Al =0 on 02 x [0, T,

61/ Us
u((so) = ug + 6 in Q,

(2.24) P}
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with0<@1<ﬁand0<@2.
Using the notation

a+n 1
GS& / / ————d7ds and
A m (1)

a+n 1
G(Z) / / des

we have the following proposition. _
PROPOSITION 2.6. Let n; > 0 be the growth exponent of m‘(;) near zero and let
qi > ﬁ Assume that there exist constants C; > 0 and o; with l < a;+n; <

(2.25)

2 such that fQ uo) dx < C;. In the case i = 2 we furthermore require that the pair

(N, ng) satisfy the conditions in (2.23). Then for a subsequence (u((S ))é\o of solutions
to the auxiliary problems Pg the following convergence properties hold true:

(i) ul’ = u® in Lo (I, HY(Q)),
(i) Ji — JD in L2(1;L2(Q)) ifi=1 or
in L? (I L% (Q)) zfz = 2, respectively,
(iii) (ugi))té( ) in L*(I; (H' )) ifi=1 or
in L? (I (W i ( ) ) if 1 = 2, respectively,
R L (w0)TE L2 (I H(Q)),

(v) (@) L @@) T g (1w (q)),

(vi) (ugi)) = — (u) N strongly in L*(I; H(2)),
where g, denotes the conjugate exponent to ¢;.

For the limiting function u'? the following estimate is valid with constants Cy
and Cy which only depend on the domain Q (in particular, Cs is zero if Q is convex):

(iv) (ug”) 2

(2.26)
sup / GO (u (1)) + !

t€[0,T]

atntl |2 atntl |4
2 1

D2( ('))

+Ct
Qr

vV (u®)

Qr

g/qmw+@/(WWMﬂ.
Q Qr

Proof. We present it in detail only for the case i = 1, drop here the superscript
(i) and indicate the main modification necessary for the other case. For a given «
satisfying 3 < a +n < 2 we choose & := a + (n — s) and apply Proposition 2.2 with
% < a+ s < 2tous. This gives after rewriting in terms of o and n:

(2.27)

_ _ 2 _ _
sup Gas(us(t,z)) + Cf ! u?+n+1 l |D2ug| +Cy 1/ ug 3 \Vu5|4
tefo,11 /o Qr Qr

< / Gos <UQ§(£C)) + 02/ u?+"+1.
Q Qr

Using now the identity

Dmimj ul = 7(’7 - 1) u’y_QDl’iuDIju + ’YU“/_IDmij
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and Young’s inequality, we observe after straightforward calculations the existence of
a new constant C independent of ¢,y such that

2
+Ct

atntl 4

2 a+n+1
Dou, 2

sup Gmg(ug(t,x)) + ot Vug *

teo, 7] Ja Qr

S/Gaé(u05($)) +Cz/ ug L
Q Qr

(2.28) or

From estimate (2.5) we infer the validity of (i), (ii), and (iii). Combining these results
with the inequality

/ Gas(uos(2)) do < / Ga(uo(z)) dz + 0s(1),
Q Q

we obtain by use of Lemma 2.5 the validity of (iv)—(vi). Writing

t s t s
Gas(t) = / / Go(7r)drds + 5/ / rotn=slards,
AJA AJA

observing that the second term on the right is nonnegative, and using both Fatou’s
lemma and the convergence of us to u pointwise almost everywhere, we end up with
(2.26).

For the case ¢ = 2 we only have to convince ourselves that Js is uniformly bounded
in L? (I; Lq'(Q)) for ¢’ < m. This can be seen by use of Holder’s inequality
and the uniform boundedness of the quantities

/ (mes(ug) +¢€) VAU dadt
Qr

which occur during the proof of existence of solutions to degenerate problems by use
of nondegenerate auxiliary problems (cf. [13], [10]). 0

Remark. For N = 3 the Sobolev imbedding theorem implies that the limit u from
Proposition 2.6 belongs to L (I; L°(£2)). Using the fact that Vi e LY(Qyp),
we can apply interpolation theory (cf. DiBenedetto [9, Proposition 3.2]) to get LP-
regularity of w for all p < a+n+9.

As a further consequence of Proposition 2.6 we obtain the following corollary.

COROLLARY 2.7. Under the same assumptions as in Proposition 2.6, for a sub-

sequence of (ugi))g\() the following is true:

(2.29)
V(u((;)) B —V(u) B strongly in L*~ ([u(i) > 0]) and pointwise a.e.,
(2.30) Vugi)—>Vu(i) strongly in L*(Qr).

Proof. With the help of Vitali’s theorem, relation (2.29) follows from point (v) of
Proposition 2.6 and the convergence pointwise almost everywhere of (V(ugz)) g )6™0

on the set [u( > 0].
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Concerning the convergence behavior of (vuéi))(s\,o, we observe—combining (2.29),

the identity |Vv|> = (a+i+1)21}3734’|V1}a+2+1 2,

Proposition 2.6—that for ¢ tending to zero HU((SZ)||L2(QT) converges to |[u)]]12(qp).-

Now we recall the following well-known lemma.

LEMMA. Assume that a sequence (uy)nen weakly converges to u in a Hilbert space
X. If additionally (||un| x)nen converges to ||ull -, then (un)nen strongly converges
tou in X. 0

Hence, (2.30) can easily be established.

and the points (v) and (vi) of

3. Existence, qualitative behavior, and (non)uniqueness of solutions.
In this section we improve the existence results obtained previously in [13] and [10].
In particular, it will be possible to treat initial values with compact support in the
case 2 < n < 3 which is important in lubrication theory. Moreover, we are able to
extend the range of allowed diffusion growth exponents beneath 1 to % and we propose
a solution concept also for diffusion coefficients with polynomial growth.

Let us begin with the following assumption (A4) which basically requires that
m (m/, m”, respectively) have at most polynomial growth with the exponents n
(n — 1,n — 2, respectively).

(A4) The diffusion coefficient m and the first two derivatives can be written as
m(r) = 1" fo(), m/(1) =771 f1(7), and m"(7) =2 fo(7)(r € RF,i=0,1,2)
with functions f; such that ||fi||02—i(R§,RU+) < 00 (i = 0,1,2). Furthermore, we assume
that fy is positive and that m is bounded from below by a positive constant for large
values of 7.

Let us present our concept of solution.

DEFINITION 3.1. Let N > 2, n > 0, and m satisfy (A4). Let (u,J) be the element
of L®°(I; HY(Q)) N HY(I; (Wh(Q))’) x L2(I; LY (9 RY)) where q satisfies one of the
following properties:

(i) g=2 if m & L®(R),

(ii) ¢ > m (and n < 25 if N > 3).

We call the pair (u, J) the solution of (1.1) if

(3.1) u = —divJ in L2(I; (Wh(Q)))

m”(u) |Vul* is in L*([u > 0]), and J satisfies the relation J = m(u)VAu in the
following weak sense:

/ J - ndzdt = %/ m" (u) |Vul® Vun + %/ m/(u) |Vul® divy
Qr [u>0] [

u>0]
(32) —|—/ m/ (u)(Vu, D, Vu) +/ m(u) VuV divny
[u>0] Qr
Vn € L™ (I; WZ’OO(Q;RN)) such that n-v =20 on 09 .

(Here, ¢ denotes the conjugate exponent to q.)

Remark. Property (ii) is only necessary as long as there does not exist a positive
result about boundedness of solutions.

Our main existence result reads as follows.

THEOREM 3.2 (existence of regular solutions). Assume that the diffusion coeffi-
cient satisfies (A4) and that the initial value ug € H () is nonnegative and satisfies

/ Go(ug)dx < 0o
Q
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% —n,2—mn). If one of the following combinations is true,

for a certain constant a € (
(i) N=2andn> 3,
(i) N =3, m € L*(R), and n > £,
(i) N =3, £ <n <4, and a > -2,

then there exists a solution (u,J) to equation (1.1) in the sense of Definition 3.1.
In particular, u has the following additional regularity properties:

a+n+l

u 1 € L4(I; W1’4(Q)),

at+n+41

u 2 € L*(I; H*(Q)).

Remark.

(i) For diffusion growth coefficients 0 < n < 3, it is always possible to find a real
number o € (5 —n,2—n) such that ap+1 > 0. Thus [, Ga, (uo)dz < oo for
arbitrary nonnegative initial data uo € H'(2), i.e., for arbitrary n € (3,3)
and arbitrary nonnegative initial data ug € H'(), a regular solution to (1.1)
does exist.

(ii) Let us emphasize that in order to give a meaning to the first three inte-
grands on the right-hand side of (3.2), we make essential use of the identities

3
un2|Vul? = e and w1 |Vu|? =

Vu 4

3 ntl-3a
U

(s7r)
2

(ﬁ)Quw;a ’Vu

Proof of Theorem 3.2. Let us begin with the case m € L*°(R) and N = 2 or 3. For
the ease of presentation we now drop the superscript (¢). From Proposition 2.6 and
Corollary 2.7 we infer the following convergence behavior for a subsequence (us, Js)s—0
of solutions to the auxiliary problems P}:

(i) use — uq in L2 (1; (HY())"),

(ii) Vus—>Vu strongly in L?(Qr),
(iii) Js — J in L*(Q7),
(

atntl
1

a+n+1 atn
iv) Vug © — Va5 in L4(Qyp),
(v) Vug * —Vu™ " strongly in L4~ ([u > 0]) and pointwise a.e.
From (i) and (iii) relation (3.1) follows immediately. To proceed with the identification
of J, we use the formula

/r%(w)VAum = %/ m (us) [Vus|> Vusn + %/ mf(us) |Vus|? divy

+/ mig(us)(Vus, Dn, Vus) +/ ms(us) VusV divn,
Q Q

which is valid for ms € C?(R) N W2°°(R), us € H2(Q) with VAus € L*(Q) and
n € W2(Q) with - v =0 on 9Q as will be proved in the Appendix.

By our choice of ms we can identify Js(t) for a.e. t € I with mg(us) VAus; thus
Js can be related to ms(us) VAus in the sense of (3.2). Let us now pass to the limit
6 \, 0 on the right-hand side of (3.3). As the third term on the right-hand side of
(3.3) qualitatively shows the same behavior as the second one and as the fourth term
can easily be handled by using convergence property (ii), we will discuss in detail only
the first and the second term. Writing mj(7), mj(7) as

my(r) =" f1.5(7) and my (1) = 7" 2 fa5(7),
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we observe after straightforward calculations that f; s are uniformly bounded in
L*(R{) (i = 1,2) and that on each compact subset of (0,00), f; s converges to

fi uniformly. For o with § < o+ n < 2 we write Ja, m% (us) \Vul® Vun dzdt as

n+l-3a
1
A Ugs \%
T
n+1

Condition n > % ensures that o can be modified in such a way that 4*36‘ is positive,
and in addition [, Gq(ug)dz is bounded.

Using the properties of f; s, the regularity of us, and n > 1/8, we observe that
the term in wug converges weakly in L'*9(Q7) (for values of o sufficiently small)
to a function 3. From (v) and the pointwise convergence of fa s(us) we infer § =
m” (u) |[Vul® - Vu on the set [u > 0].

On the set [u = 0] we argue as follows: for each ¢ > 0 we find by Egorov’s theorem
a set S C [u= 0] with LVNT1(S,) < & such that us uniformly converges to u on the

subset [u = 0] \ S:. Thus we can estimate:

2 atn+1

Vus, * - fa5(us)ndxdt.

a+n+1
4
Us

‘/ my (us) |Vus|* Vs - 1 dedt
fu=0)

n+1—3a at+n+1
£ v £y
Ué ’LL(S

3
= N fa6(us)| - 0| dedt

- /sgu([u—o]\sg)

(3.4)

atn+1

< 06(1)/ ‘vus !
[u=0]\Se

1 3
n+173a Z atn+1 4 Z
+(/ uf dmdt) </ Vg | dxdt) 1 fzs e - N7l -
SE Sa

By Vitali’s theorem the second term in (3.4) converges to zero when £V +1(S.) — 0.
This gives the convergence of the first term on the right-hand side of (3.3).
For the second term on the right-hand side of (3.3) we write

—a+n+1
us ° \Y
Qr

and use exactly the same technique as before in order to identify the limit. Putting
everything together, the validity of (3.2) is established for m bounded. Eventually, we
remark that the case of an unbounded diffusivity m which grows at most polynomially
can be handled similarly, provided we use the restrictions on n in order to guarantee
applicability of Holder’s inequality in the analogue to (3.4). Using the remark at the
end of the first section, we see that this is possible if a > —2. O

Let us point out that the regularity properties of u stated in Theorem 3.2 imply
the following result about the behavior of the normal derivative of a solution at the
boundary of supp(u).

COROLLARY 3.3 (regularity at the free boundary). Let P := {t € I
u(t, )5 l[wiaq) < oo} with a as in Theorem 3.2. Then the following results
are true:

(i) Under the assumption that O[supp(u(t,.)] is an (N —1)-rectifiable set, we have

fort € P and for HN"'—almost every = € [supp(u(t,.))] that the normal
derivative 2 u(t,x) exists and that it is equal to zero.

3
dxdt

2
- f1.5(us) - divn dzdt

a+n+1
4
Ué
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(i) If N =2 and n < 2, then for arbitrary t € P and for all z € [u(t,.) = 0] we

have that Vu(t, z) vanishes.

Proof. Let us begin with the proof of (i). Assuming first that d[supp(u(t,.))]
consists of ﬁnitely many portions of hyperplanes, the result follows from the WW14-
regularity of u et , the nonnegativity of u, and the fact that W1P-functions are
absolutely contlnuous along almost all line segments (cf. Theorem 2.1.4 of [15]). By
flattening each C%!—portion of d[supp(u(t,.)], the general case can be established by
straightforward calculations.

In order to prove (ii), we observe that if N = 2 and = € [u(t,.) = 0], there exists
a positive constant C' depending only on 2 and the W*(Q)-norm of u(t,.) such that

for all y € Q we have u(t,y) < Cly — x\ﬁ If n < 2, a can be chosen in such a
way that +n o771 > 1. This completes the proof. 0

The strengthened entropy estimates also enable us to improve results concern-
ing positivity properties of solutions. Combining (2.26) and the techniques of ([13
Theorems 1.2 and 1.3]), we arrive at the following theorem.

THEOREM 3.4 (positivity properties). Let u be a solution of (1.1) in the sense of

Theorem 3.2 and assume the initial value satisfies fQ u0/2 "dr < oco.
(i) If n > 3/2 there does not exist a subset E C Q with LN(E) > 0 and a time
to such that [, u(x,to)dx = 0.
(ii) If N=2 andn > 3 or if N = 3 and n > 6, the solution u is for almost every
t € [0,T) strictly positive in .

Let us now discuss the asymptotic behavior of a function u which solves (1.1)
in the sense of Theorem 3.2 and in particular satisfies a priori estimate (2.26). We
obtain the following theorem.

THEOREM 3.5 (convergence to the mean value). Let n > é be the diffusion
growth exponent. Suppose Q is convexr and u solves (1.1) in the sense of Theorem 3.2
and satisfies the a priori estimate (2.26) for an a with o +mn > 1.

Then

lim u(t) / uo(z in H'(Q).
el

t—o0

Proof. Note that for convex §2 the constant C5 in Proposition 2.2 is equal to zero.
Thus there is an increasing sequence (t;)ren tending to infinity with the property

. atn+1 2
) fo|D2uER () de N0,
() [V | @ de o0,
which implies that both (Vuwrg+1 (t’“))keN and (u et (tk))keN converge to a con-

stant in the corresponding norms. Hence uwF also converges to a constant with
respect to the L?-norm and thus

a+n41 2
/‘Vu7+2+ (tk)‘ dz N, 0 .
Q

Therefore,

/|Vu|2(tk)dx§/ ua+”_1|Vu|2(tk)dx+/ u
Q [u>1] [u<1]
= Ok(l) .

a+n—3
2

(Vul? () dx
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Now using the monotonicity formula (2.5) and the strong convergence of Vus to Vu
with respect to the L?(Qr)-norm (cf. (2.30)), we infer for almost every t1,ts € I

to
/|Vu(t2)|2dx—/ [Vu(ty)|® de < —21lim inf /m(u5)|VAu5|2dmdt;
Q Q =0 Sy, Jao

Le., [ |Vu(t, :c)|2 dz is nonincreasing in t. Thus the result follows just by application
of Poincaré’s inequality for functions with mean value zero. O

Remark. (1) If % < n < 3 we get that for all nonnegative initial data ug € H*(£2)
there exists an a such that o+ n > 1 and such that the a priori estimate (2.26) is
satisfied. This means that in particular all solutions with compactly supported initial
data converge to the mean.

(2) If n > 3 the same convergence behavior holds true if we impose an additional
condition on the initial value; namely, there is a number ¢ > n — 3 such that

/ugadx<oo.
Q

This implies that [, Go(ug) is bounded for an a with a +n > 1.

(3) If Q is not convex, the second term on the right-hand side of (2.26) cannot
be neglected any longer, and thus the method of proof above cannot be applied.
Nevertheless, by using the boundedness of

/ / |Aul? dadt
0 Q

the result still can be established if a priori estimate (2.3) holds true, i.e., if n < 2 or
if n > 2 and the initial value is strictly positive. Whether it is also true in the case
when n > 2 and initial values have compact support still remains an open question.

Let us now construct steady state solutions with compact support which solve
(1.1) in the sense of equations (3.1) and (3.2) for n > 1. In Theorem 3.5 we have
already proved that for arbitrary, nonnegative initial values ug € H*(£2) with compact
support there exist solutions which converge for ¢ — oo to the mean value with respect
to the H'-norm. This illustrates in particular that for values of n € (1,3) we cannot
expect results on uniqueness without imposing additional regularity properties at the
free boundary in the spirit of estimate (2.26).

LEMMA 3.6 (steady state solutions with compact support). Let ' CC Q be a
subdomain with smooth boundary. Let 4 be the solution of

—At=11in
=0 on 9.
Combining the function u defined by
o in Q,
u =
0inQ\

with J = 0, we obtain a weak solution to (1.1) for values of n > 1 in the sense of
Definition 3.1.

Proof. From elliptic regularity theory (cf. Gilbarg and Trudinger [12, Chapter §])
we infer

0 e H*(Q)NnC>®(Q) nwhee ()
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and
(%) / Vavy = [ ¢ Ve Wy TE9).
’ Q/

In addition 4 is positive in €' (cf. [12, Theorem 8.19]).

Since J is equal to zero on €2, it will be sufficient to prove that the right-hand
side in (3.2) vanishes. We have

RHS = %/ m" () |Vl vam/ m' (u)(Va, Dn, Vi)
Q' xT Q' xI
_%/ m' (@) divnvava+/ V (m(a) divn) -Vi
Q' xT Q' x I N— — ™
ew e ()
=T +II+IIT+1V.

(Since @ € H2(Y) N W1>°(Q') and n > 1, the boundedness of all the integrals in the
equation above is a simple consequence of Holder’s inequality.)
Let v’ be the unit outer normal vector on 9. Using the relation (), we obtain

IV = / m(a) divy = — Vm(a)n +/ m(a)n - v dHN
I

Qf O X [ N ———
T -0

=— m/(u) Vun © —/Q V(m/(u)Vun) - Vu

’ /
QT T

=— m' (u) |Vul*nVu —/ m/(u)(Vu, Dn, Vu) — m' (u)(n, D*u, Vu)
Qo Qp Qr
=IVi+1Vo + IVs.

For I'V3 we compute:

Vs = f%/ m/(w)n -V |Vul®
Q7
_ ;/
2
Q

z m (u) |Vul® nVu+ %/ m/(u) divey |Vul®.
Q. Q.

div(m/(u) ) - [Vul|* - %/ m'(u) |Vul® n- v dHN

A o9 x 1

=0 (since m’(u) = 0 on 99')

Summing up, we obtain I + I + I1I = —IV, which proves the claim. 1]

Remark. By linearity it is clear that we can adjust @ in such a way that each
positive mean value can be reached. We just take

A

o in €,
=0 on 0¢Y,

(<33
Il

>

with o > 0 arbitrary.
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Appendix.

A. Proof of Lemma 2.1 (proof of (2.4)). Let (ucs)en 0 be a sequence of solutions
to auxiliary problems with nondegenerate mobility m.(7) = m(7) + ¢ and initial
value ug (cf. [13] and [10]). Combining the Aubin-Lions lemma and the uniform
boundedness of u. (or of (uc)) in L?(I; H*()) (or in L2 (I; (H*(£2))’), respectively),
we notice that a subsequence (u.).\ o strongly converges to u in L*(I;C?(Q)) for
sufficiently small, positive § and that we can extract a subsequence such that u.(¢) —
u(t) in CP(Q) for almost all ¢ € I. Using the positivity result in Theorem 1.3 of [13],
we observe that there is a set P C I with £}(I\ P) = 0 such that for all t € P, u(t)
is in C#(Q) and is strictly positive on €.

It will be sufficient to show that the one-dimensional measure of the set

E= {t eP: lirni(r)lf/fmE (us(t)) IVAu.|? () do = oo}

vanishes. Defining K. (t) := [, m. (uc(t)) |V Auc(t))* dz and

n  otherwise

{A if A< n,

and using the positivity of u(t, -) for almost every ¢, we have, by Lebesgue’s theorem,

2 e—0
C’Z/E/ng(ug(t,x)) |VAu(t,z)| dxdtz/E[Kg(t)]ndt—>n.|E|.

As n can be chosen arbitrarily, this implies £!(FE) = 0. For fixed t € P\ E we can
select a subsequence of (VAu(t,.)).—o which weakly converges in L?(€2). Then (2.2)
implies that J(t) = m(u(t))VAu(t) in L*(Q) for all t € P\ E.

Proof of (2.5). Choosing ¥(t,z) = X, 1,]Aue as the test function in the weak
formulation

T
/ ((ug)e, )dt — me(ue) VAuVipdrdt = 0,
0 Qr

Y € L*(I; H*(Q)) arbitrary

for auxiliary problems with nondegenerate mobility as described above, we immedi-
ately obtain for almost all ¢t1,ts € T

1 b2 1
f/ |Vu8(t2)|2dm+/ /mg(u8)|VAua|2dxdt§ 7/ Ve (11)[2 da.
2 Q t1 Q 2 Q

Now observing that Vu. converges to Vu strongly in LzNNH_(QT) (cf., e.g., [13,

Lemma 2.8]) and that m2 (u.)VAu. in L?(Qr) weakly converges to a function 3
which for almost every ¢ € I can be identified with m(u)VAu, the result follows by
the lower semicontinuity of the norm under weak convergence.
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B. Proof of Lemma 2.3 and (3.3). The following result will be essential.
LEMMA B.1. Let Q C RN be a domain with piecewise smooth boundary of class
C%1. For every vector field n € H?(S;RYN) which is tangential on 9§ we have

(B.1) (Dn-v)=—dv-n

a.e. on 0. Here, ()| denotes the tangential component of a vector field.
Proof. Since n-v = 0, we have for arbitrary smooth curves ¢ : [0, 1]—9

d

0= T (Mett)> Vier)) = (DMeye(t)s Viey) + (Me()s Wjeqe - €(E))

for almost every = = c(t) € 9. As dv : T.4)S—T, S is a self-adjoint, linear
mapping (cf. [11, Chapter V]), we obtain

(Me(tys W)ery - €)= (dVieqr) * Meny» (1))

which proves the lemma. 0

Proof of Lemma 2.3. We assume VAu € L?(2). The result for functions with
weaker regularity can be proved by an approximation argument. Successive integra-
tion by parts gives

/f’(u) Vu|® Au = —/ Flu) |Aul? —/ f(u) VAuVu
Q Q Q
:—/ fu) |Au|2—|—/ f’(u)(Vu,D2u,Vu>+/ f(u) |D2u|2
) Q )
- / f(u)(Vu, D*u,v) dHN 1.
o0
Using now the identity (Vu, D?u, Vu) = 1(V |Vul?, Vu), we obtain (Zu=0onoN):

1 1
[ w0, v0) = =3 [ ) val* = 5 [ 7 val® A
Q 2 Jo 2 Jo
Putting everything together and using formula (B.1), the result can be established

easily. 0
Proof of (3.3). Integration by parts shows

/m(u) VAundx = %/ m (u) |Vul? Vunder%/ m/ (u) |Vul divy de
Q Q Q
+/m’(u)<Vu, Dn, Vu) dx+/ m(u) VuV divny dz
Q Q
—/ m(u){(Vu, Dn,v) — (n, D*u,v)} dHN 1.
00

Since both n and Vu are tangential vector fields on 9, we can apply (B.1) twice and
obtain the result. O

Acknowledgments. It is a pleasure to thank Michiel Bertsch for deep and fruit-
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BOUNDARY LAYERS IN THE HOMOGENIZATION OF A
SPECTRAL PROBLEM IN FLUID-SOLID STRUCTURES*

GREGOIRE ALLAIRE! AND CARLOS CONCA?

Abstract. This paper is devoted to the asymptotic analysis of the spectrum of a mathematical
model that describes the vibrations of a coupled fluid—solid periodic structure. In a previous work
[Arch. Rational Mech. Anal., 135 (1996), pp. 197-257] we proved by means of a Bloch wave homog-
enization method that, in the limit as the period goes to zero, the spectrum is made of three parts:
the macroscopic or homogenized spectrum, the microscopic or Bloch spectrum, and a third compo-
nent, the so-called boundary layer spectrum. While the two first parts were completely described
as the spectrum of some limit problem, the latter was merely defined as the set of limit eigenval-
ues corresponding to sequences of eigenvectors concentrating on the boundary. It is the purpose of
this paper to characterize explicitly this boundary layer spectrum with the help of a family of limit
problems revealing the intimate connection between the periodic microstructure and the boundary
of the domain. We therefore obtain a “completeness” result, i.e., a precise description of all possible
asymptotic behaviors of sequences of eigenvalues, at least for a special class of polygonal domains.

Key words. homogenization, Bloch waves, spectral analysis, boundary layers, fluid—solid struc-
tures

AMS subject classification. 35B40

PII. S0036141096304328

1. Introduction.

1.1. Setting of the problem. This paper is devoted to the study of some
boundary layer phenomena which arise in the asymptotic analysis of the spectrum
of a mathematical model describing the vibrations of a coupled periodic system of
solid tubes immersed in a perfect incompressible fluid. This simple model is due to
Planchard, who studied it intensively (see [31], [32]). Since we introduced it at length
in section 1.2 of our previous work [3] we content ourselves with briefly recalling the
statement of this problem.

We consider a periodic bounded domain €2, obtained from a fixed bounded open
set Q in RY by removing a collection of identical, periodically distributed holes
(T;)lgpgn(s)~ The distance between adjacent holes as well as their size are both
of the order of €, the size of the period which is a small parameter going to zero.
Correspondingly, the number of holes n(¢) is of the order of e~V where N is the spa-
tial dimension. More precisely, let us first define the standard unit cell Y = (0; 1)V
which, upon rescaling to size €, becomes the period in ). Let T' be a smooth, simply
connected, closed subset of Y, assumed to be strictly included in Y (i.e., T does not
touch the boundary of V). The set T represents the reference tube (or rod) and the
unit fluid cell is defined as

Y*=Y\T.
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For each value of the small positive parameter €, the fluid domain €2, is obtained from
the reference domain €2 by removing a periodic arrangement of tubes €I" with period
€Y. Denoting by (7}) the family of all translates of €I" by vectors ep (where p is a
multi-index in Z) and by (Y,) the corresponding family of cells, we define

n(e)
(1) Q. =\ 15

p=1

Although p is a multi-index in Z, for simplicity we denote its range by 1 < p < n(e).
To obtain the fluid domain €, in (1), we remove from the original domain  only
those tubes 7} which belong to a cell Y7 completely included in €. This has the
effect that no tube meets the boundary 0€2. Analogously, (F;) denotes the family of
tubes boundaries (9T}).

We are interested in the following spectral problem in €: find the eigenvalues A,
and the corresponding normalized eigenvectors u., solutions of

7AU€ =0 in Qea
(2) Ae %1;: =eNig. / uciids  on T for 1 < p < n(e),
1—‘6
ue =0 ’ on 0,

where 77 denotes the exterior unit normal to €.

The homogenization of this model has already attracted the attention of several
authors (see [1], [14], [16], [17]). Even though it is a spectral problem involving the
Laplace operator, it is easily seen to admit only finitely many eigenvalues, exactly
Nn(e) (the number of tubes times the number of degrees of freedom in their displace-
ments). To this end, a finite-dimensional operator S, is introduced, which acts on the
family of tube displacements 5= (5,)1<p<n(c) With 5, € RY,

S, RNTL(E) N RNn(e)’

B} 1 )
(3) (5p)1<p<n(e) <€.N/ uends> ,
E 1<p<n(e)

where the fluid potential u. is now the unique solution in H(Q.) of

—Au, =0 in Q,

@) %1:::5"]3.77 onF;fOIISPSn(E)v
e =0 on 0f.

According to [17], S, is self-adjoint, positive definite, and its spectrum, denoted
by o(Se), coincides with the set of eigenvalues of (2). Of course, since S, acts in a
finite-dimensional space, o(S.) is made up of Nn(e) real numbers. It has been further
proved that all eigenvalues of S, are uniformly bounded away from zero and from
infinity (see, e.g., Proposition 1.2.1 and Lemma 1.2.2 in [3]). As the period € goes
to zero, o(S.), considered as a subset of RT, converges to a limit set oo, which, by
definition, is the set of all cluster points of (sub)sequences of eigenvalues of S,

0o = {X € R | 3 a subsequence A € 0(S) such that A\ — A}.

Finding an adequate characterization of the limit set 0., was the main goal of our
previous paper [3]. A positive answer to this problem is given in the present article
for a special class of polygonal domains.
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1.2. Survey of the previous results. The characterization of o,, amounts
to studying the asymptotic behavior of the spectral problem (2), or, in other words,
to homogenize (2) as the parameter ¢ goes to zero. To our knowledge, this can be
done, at least, using two different approaches: the classical homogenization process
for periodic structures (see, e.g., the reference books [7], [8], [24], [28], [35]) or the
so-called Bloch wave method (also called the nonstandard homogenization procedure
in [16]; see [8], [33], [34], [36] for an introduction to Bloch waves in spectral analysis).
The former naturally yields the homogenized or macroscopic spectrum of (2), while
the latter is associated with the so-called Bloch or microscopic spectrum.

Historically the second approach was the first applied to problem (2) by C. Conca,
M. Vanninathan, and their coworkers [1], [15], [16], [17]. The key point in this method
is to rescale the e-network of tubes to size 1 and, therefore, as € goes to zero, to obtain
an infinite limit domain containing a periodic array of unit tubes. Then, the limit
problem is amenable to the celebrated Bloch wave decomposition (also known as the
Floquet decomposition; see the original work of F. Bloch [11] or the first mathematical
papers [19], [30], [36] or the books [8], [33]). The spectrum of this limit problem is
called the Bloch spectrum.

Although it seems the easiest to apply, the first approach (i.e., the classical ho-
mogenization) has only been recently applied to problem (2) in our previous article
[3]. By homogenizing the operator S, with the help of the two-scale convergence (see
[2], [29]), a homogenized equation is obtained in the domain 2. Its spectrum is called
the homogenized spectrum. It turns out that the homogenized spectrum is completely
different from the Bloch spectrum, and therefore both approaches are complementary.
This is possible since in neither case the underlying sequences of linear operators con-
verge uniformly to their limit which are noncompact operators. In addition to this
homogenization result, our paper [3] provides a unified theory for both approaches
that we called the Bloch wave homogenization method. We refer to [3] for more details
(see also [4], [5]), and we simply recall our main results.

The homogenization of model (2) amounts to analyzing the convergence of the
sequence of operators S.. Since these operators are defined on a space which varies
with €, we extend them to the fixed space [L?(2) ]KN, where K is an arbitrary
positive integer. Denoting by SX this extension, it will be amenable to a standard
asymptotic analysis, while keeping essentially the same spectrum as S.. Following
the lead of Planchard [32], the reference cell of our homogenization procedure is K'Y
instead of simply Y (this technique is referred to as homogenization by packets in
[32]). To give a precise definition of SX we introduce two linear maps: a projection
PX from [L2(Q)V]E" into R¥N™(©) and an extension EX from RN™(€) into [L2(Q)N]E"
such that SX = EXS.PX. To do so, some notation is required concerning the two
indices p (indexing constant vectors in RV™€) and j (indexing vector functions in
L2 (@N]T),

DEFINITION 1.1. Let KY be the reference cell (0, K)N which is made of K™
subcells Y; of the type (O, )N containing a single tube T;. The multi-integer j =
(j1,---,jn) which enumerates all the tubes in KY takes its values in {0,1,..., K—1}¥
(we use the notation 0 < 57 < K —1). Let p = (p1,...,pN) be the multi-integer
which enumerates all the tubes in Qe (see (1)). We define a third multi-integer £ =
(L1, ...,0Nn) which enumerates all the periodic reference cells e(KY') in Q. (its range
is denoted by 1 < £ < ng(€)). These three indices are assumed to be related by the
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following one-to-one map:

(5) em:E(%m), i = pm — Kby ¥m=1,..,N,

where E(-) denotes the integer-part function.
Then, PX and EX are defined by

N

PE 2@V — RO,

(6)

(5j(x))o<jcx—1 — (5}7 = @] Jexevy. §j(w)d$)1§p§n(e)’

N

B RO [(@V)E

7 . . o
@) (Sp)i<psn(e — (Sj (z) = ZXE(KY)e(x)Sp)
¢ 0<j<K-1,

where p is related to (¢,7) by formula (5). One can easily check that the adjoint
(PEY* of PX is nothing but (eK)™NEX and that PXEX is equal to the identity in
RN™€) . Therefore, SX is also self-adjoint compact and its spectrum is exactly that
of S, plus the new eigenvalue 0 which has infinite multiplicity.

The homogenization of the extended operator SX is now amenable to the two-
scale convergence method [2], [29]. However, the limit operator S¥ has a complicated
form which can be simplified by using the following discrete Bloch wave decomposition
(see [1]).

LEMMA 1.2. For any family (5j)o<j<kx—1 of vectors in CN, let §(y) be the fol-
lowing KY -periodic function, piecewise constant in each subcell Y:

K-1
Sy) =" Fxv,(y) VyeKY.
j=0

There exists a unique family of constant vectors (t;)o<j<r—1 in CN such that

K-1
®) Sy) =Y 5T EPW vy e KY,
0

j=

where E(-) denotes the integer-part function. Moreover, the Bloch wave decomposition
operator B, defined by B(5;) = KN/2(t}), is an isometry on ((CN)KN.
The first main result in [3] (see Theorem 3.2.1) is the following theorem.
THEOREM 1.3. The sequence SK = EXS.PK converges strongly to a limit
SK; ., for any family (5j(z))o<j<i—1, SK(5;) converges strongly to S¥(5;) in
[LZ(Q)N]KN. Furthermore, the limit operator S is given by

(9) SK = B*TKB, with TK = dlag [(TJK)OSjSKfl} s

where the entries T]-K are self-adjoint continuous but noncompact operators in L*(Q)%,
defined by

K7 _ (A(O):I)Vu—(A(O)—IY*II)Fo if j =0,
(10) T {A%ﬂj if j # 0,
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where I is the identity matriz and u is the unique solution of the homogenized problem

(11) { ;iivO(A(O)Vu) = div((I — A(0))%) ZT;%Q

and, for 6 € [0,1]V, A() is the Bloch homogenized matriz with components
(Apm’ (0))1<m,m'<n defined by

(12) Apyr (0) = . Vw), (y) - Vg, (y)dy,

where (wfn)lngN are solutions of the so-called cell problem at the Bloch frequency

0:

~Aw?, =0 n Y™,
(13) (Vg = €m) -7 =0 on oT,
y — ef2mt9~wan(y) Y*-periodic.

The first component T¢< of the limit operator TX is the same for all K and is
denoted by S in what follows. It is called the macroscopic or homogenized limit of S,
((11) is also called the homogenized equation). The spectrum o (.5) is essential and has
been explicitly characterized in Theorems 2.1.4 and 2.1.5 of [3]. The other components
of TK are simple linear multiplication operators that represent the microscopic or
Bloch limit behavior of the sequence SX.

According to Proposition 3.2.6 in [3], the matrix A(6) is Hermitian and positive
definite for any value of #. Furthermore, it is a continuous function of 6, except at
the origin § = 0. Nevertheless, it is continuous at the origin along rays of constant
direction (see Proposition 3.4.4 in [3]). Denoting by 0 < A\1(0) < A2(0) < --- < An(6)
its eigenvalues, we can define the so-called Bloch spectrum by

N
O Bloch = U Am(}()?]-[N)?
m=1

where A, (]0, 1[V) denotes the closure of the image of |0, 1[ under the maps A, (-).
We deduce our second main result.

THEOREM 1.4. The strong convergence of SX to the limit operator S¥ implies
the lower semicontinuity of the spectrum

o(S%) C lim o (SK).

e—0
By letting K go to infinity, we obtain

(14) O'(S) U oBioch C liH(lJ G(Se).

REMARK 1.5. As a matter of fact, the Bloch spectrum o gioch, and the homogenized
spectrum o(S) do not coincide. Therefore, both type of limit problems (macroscopic
(11) and microscopic (13)) are complementary. As already mentioned, the Bloch
spectrum has already been characterized by C. Conca and M. Vanninathan in [17] by
means of a different method, the so-called nonstandard homogenization procedure (see
also the book [16]).
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The question is now to see whether the inclusion in (14) is actually an equality,
i.e., if our asymptotic analysis is complete. It turns out that the homogenized and the
Bloch spectra are usually not enough to describe o, because the interaction between
the boundary 02 and the microstructure is not taken into account in our analysis.
More precisely, there may well exist sequences of eigenvectors of (2) which concentrate
near the boundary 92 of 2. They behave as boundary layers in the sense that they
converge strongly to zero locally inside the domain. Clearly the oscillations of these
eigenvectors cannot be captured by the usual homogenization method; neither are
they filtered in the Bloch spectrum which is insensitive to the boundary.

Nevertheless, the third main result of our previous paper [3] shows that for any
other type of sequences of eigenvectors (not concentrating on the boundary), the limits
of the corresponding sequences of eigenvalues belong to o(S) U opgjecn. More exactly,
introducing the subset of o4

Tboundary = {N € R | 3(Aer,5) such that SL5 = A\o5", Ao — A,

15 ' /
( ) ||§'6 HLZ(Q)N =1, and Yw with @ C Q, Hgt ||L2(W)N — 0},

where € is a subsequence of € and S} is the extension to L?(Q)" of S., we proved the
following theorem (see Theorem 3.2.9 in [3]).

THEOREM 1.6. The limit set of the spectrum of the operator S, is precisely made
of three parts; the homogenized, the Bloch, and the boundary layer spectrum

151(1) O'(Se) =0 = U(S) U o Bloch U Oboundary-

The proof of this completeness result is the focus of section 3.4 in [3]. It involves a
new type of default measure for weakly converging sequences of eigenvectors of S¢, the
so-called Bloch measures which quantify its amplitude and direction of oscillations.

Of course the definition of 0poyundary is nOt satisfactory, since it does not charac-
terize that part of the limit set 0, as the spectrum of some limit operator associated
with the boundary 0. In particular, it is not clear whether oyoundary is empty or
included in o(S) U ogjoen- It is the purpose of the present paper to characterize ex-
plicitly 0poundary, at least for special rectangular domains € and associated sequences
of parameters e.

REMARK 1.7. By their very definitions, the limit spectrum oo and the bound-
ary layer spectrum Opoundary depend a priori on the choice of the sequence of small
parameters €. On the contrary, the homogenized spectrum o(S) and the Bloch spec-
trum o Bioch are independent of the sequence €. We believe that opoundary 5 actually
strongly dependent on the sequence €. In particular, we shall characterize it only for
a specific sequence €. We thank C. Castro and E. Zuazua for clarifying discussions
on this topic [12].

1.3. Presentation of the main new results. There are mainly two new re-
sults in this paper which correspond to the next two sections. First, in section 2 we
introduce a new class of limit problems involving the interaction between the tubes
array and the domain boundary. We assume that the domain €2 is cylindrical;

(16) O = ©x]0; L],

where ¥ is an open bounded set in RV~! and L > 0 is a positive length. A generic
point z in RY is denoted by x = (2/,xx) with 2/ € R¥~! and zy € R (ay is the
coordinate along the axis of ). Let us define a semi-infinite band

G = Y'x]0; +o0],
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where Y’ =0, 1[NV~ is the unit cell in RN ~!. This new “boundary layer” limit problem
takes place in the fluid part of GG, denoted by G* and defined by

G = G\UTq7

q=>1

where (T,) is the infinite collection of tubes periodically disposed in G. With each
tube T}, is associated a displacement 5, € RY. We denote by ¢2 the space of families
(84)g>1 such that 37 -, [5y[? is finite. Introducing a Bloch parameter ¢’ € [0, -t
we define a “boundary layer” operator dg by

dgr : 02 — 02,

(17) (gq)q21 = (/ UQ/ﬁdS> y
Tq g>1

where wug (y) is the unique solution of

—Aug =0 in G*,
ag§'=§q~fi only, ¢>1,
ugr = 0 if Yn = O7

y e 20 0, (i yn) Y -periodic.

Our first result (see Theorem 2.18) is concerned with the continuity of the spectrum
of dg/, considered as a subset of R, with respect to the Bloch parameter ¢’.

THEOREM 1.8. For all ¢ € [0,1]N¥=Y, dy is a self-adjoint continuous but non-
compact operator in (2. Its spectrum o(dg:) depends continuously on 0', except at
0" = 0. Defining the boundary layer spectrum associated with the surface X

o J o) Uoldy),

0’€]0,1[N—1
we have

ox C lir% o(Se).

In general, o(dgs) is not included in the previously found limit spectrum o(S) U
O Bioch (see Proposition 2.17). Therefore, the new class of limit problems defined by
(17) is not redundant with the homogenized or the Bloch limit problems. Our main
tool for proving this theorem is a variant of the two-scale convergence adapted to
boundary layers, using test functions which oscillate periodically in the directions
parallel to the boundary ¥ and decay asymptotically fast in the normal direction to
Y (see section 2.1). Remark that the above result holds for any cylindrical domain of
the type (16) and for any sequence of periods e going to zero.

Section 3 is devoted to our second main result which requires additional assump-
tions on the geometry of the domain and on the sequence of periods €. More precisely,
we now assume that €2 is a rectangle with integer dimensions

N
(18) 0 = [Ji0;L;] and L;eN*

=1
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and that the sequence € is exactly
1
€n = —, n €N,
n

These assumptions imply that, for any €, the domain €2 is the union of a finite number
of entire cells of size €,. Then, the above analysis of the boundary layer spectrum
oy can be achieved for any face ¥ of the rectangle 2. Of course a completely similar
analysis can be done for all the lower dimensional manifolds (edges, corners, etc.) of
which the boundary of €2 is made up. For each type of manifold, a different family of
limit problems arise which are straightforward generalizations of (17). For example,
in two space dimensions, the corners of ) give rise to a limit problem in the quarter
of space RT x RT filled with a periodic array of tubes (see section 3.3). Finally, we
prove a completeness result (see Theorem 3.1).

THEOREM 1.9. The limit set of the spectrum of the operator S, is precisely
made of three parts; the homogenized, the Bloch, and the union of all boundary layer
spectra, as defined in Theorem 1.8,

lim o(Se,) = o(S) UoBioeh Uoaq,

€En—

with the notation

o0 = U 0%,

2Con

where the union is over all hypersurfaces and lower dimensional manifolds composing
the boundary ON2.

REMARK 1.10. The difference between the above completeness theorem and The-
orem 1.6 is that, here, the boundary layer spectrum caq is explicitly defined for the
specific sequence of parameters €, as the spectrum of a family of limit operators, while,
in our previous result, the boundary layer spectrum Opoundary was indirectly defined
for any sequence € but not explicitly characterized.

We conclude this introduction by giving a few references to related works on
boundary layers in homogenization and by a short discussion on numerical studies
concerning problem (2). Apart from the classical books [7, Chapter 7] and [26], we
refer mainly to the papers [6], [9], [10], and [27]. Planchard’s model has already been
studied numerically. The Bloch eigenvalues A;(6) were computed by F. Aguirre in a
two-dimensional example. A brief account of his work is given in [1]. On the other
hand, direct numerical computations of the entire spectrum o (S,) (for a fixed value of
¢, and without using homogenization) have been reported in [23]. To our knowledge,
these are the only available numerical results concerning a large tube array (see also
[21], [22]). Of course, these results are consistent with Theorem 1.9 describing the
asymptotic behavior of o(S,). In particular, some vibration modes displayed in [23]
are numerical evidence that osq is not empty; i.e., there exist eigenvectors which are
localized near the boundary or the corners of €.

2. Boundary layer homogenization. In this section we assume that 2 is a
cylindrical bounded open set in RY in the sense that it is defined by

(19) Q = ©x]0; L],

where X is an open bounded set in RN ~! and L > 0 is a positive length. With no loss
of generality, we assume that the axis of the cylindrical domain €2 is parallel to the Nth
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canonical direction. Therefore, a generic point z in € is denoted by = = (2/, ) with
a2’ € ¥ and xn €]0; L[. The goal of this section is to analyze the asymptotic behavior
of that part of the spectrum o(S,) which corresponds to eigenvectors concentrating
on the boundary ¥ x {0}, under the sole geometric assumption (19) (in particular, no
restrictions are made on the sequence € which goes to zero).

2.1. Two-scale convergence for boundary layers. We begin by adapting
the classical two-scale convergence method of Allaire [2] and Nguetseng [29] to the
case of boundary layers, that is, sequences of functions in €2 which concentrate near
the boundary ¥ x {0}. This method of “two-scale convergence for boundary layers”
will allow us to understand this phenomenon of concentration of oscillations near
the boundary. The usual two-scale convergence relies on periodically oscillating test
functions with a unit period Y =]0, 1[V. Here, we use test functions which oscillate
only in the directions parallel to the boundary ¥ (with period Y’ =]0,1[V~1) and
which simply decay in the Nth direction orthogonal to 3.

Let us define a semi-infinite band G = Y’ x]0; +oo|, where Y’ =]0, 1[V~! is the
unit cell in RV~1. A generic point y is denoted by y = (y/,yn) with ¥/ € Y’ and
yn €]0;+oo[. We introduce the space L% (G) of square integrable functions in G
which are periodic in the (N — 1) first variables, i.e.,

L% (G) ={oly) € L*(G) | ¥’ — ¢(y,yn) is Y'-periodic}.

We also denote by C(X) the space of continuous functions on the closure of ¥, a
compact set in RN~

Combining the concentration effect in yx and the periodic oscillations in Y”, the
following convergence result is obtained for a sequence ¢(%) when ¢ belongs to Li (G)
(further modulated by z’ € X).

LEMMA 2.1. Let p(a',y) € L}, (G;C(%)). Then

liml/‘ (x' E)‘2dﬂf—i//| (@', y)|*dz'd
e—0 € Q QO 76 _|Y,| 5 GQO 7y y

REMARK 2.2. Remark that, in the left-hand side of the above equation, the second
argument of ¢ is x/e and not only x'/e. This implies that there is a concentration
effect near 0 in the xn variable since ¢ is not periodic in this direction. This, in turn,
explains the 1/€ scaling in front of the left-hand side, in order to get a nonzero limit.

As usual in the context of two-scale convergence, the above result is not specific
to the space Li (G; C(i)), which could be replaced, for example, by L? (E; CC#(G')),
where Cey(G) is the space of continuous functions in G, periodic in y' of period Y,
and with bounded support in yy .

In view of Lemma 2.1, we define a notion of “two-scale convergence for boundary
layers.”

DEFINITION 2.3. Let (uc)eso be a sequence in L*(Q). It is said to two-scale
converge in the sense of boundary layers on X if there exists ug(x’,y) € L?*(X x G)
such that

1
lim = [ wuc(x)e (3:’, E) dr =
e—0 € Q €

1
|Y,|/E/Gu(a(r’,y)w(m’,y)dx’dy

for all smooth functions p(2',y) defined in ¥ x G such that y' — oz’ ¢, yn) is
Y'-periodic and ¢ has a bounded support in ¥ x G.
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This definition makes sense because of the following compactness theorem which
generalizes the usual two-scale convergence compactness theorem in [2], [29].

THEOREM 2.4. Let (uc)eso be a sequence in L2(2) such that there exists a con-
stant C, independent of €, for which

1
z”uellL?(Q) <C

There exists a subsequence, still denoted by €, and a limit function ug(z’,y) € L?( x
G) such that

et [ (o D) = o [ el vasdy
for all functions p(z',y) € Li& (G;C(D)).

Remark that Theorem 2.4 does not apply to sequences which are merely bounded
in L?(Q) but also converge strongly to zero in L%(£2) as the square root of €. Of course,
this is the case for a sequence of the type ¢(2', £), where ¢(z’,y) is as in Lemma 2.1;
then, the limit is nothing but p(z’,y) itself.

It is not difficult to check that the L2-norm is weakly lower semicontinuous with
respect to the two-scale convergence (see Proposition 1.6 in [2]); i.e., in the present
situation

1
hm \/HUeHL (Q) W||UO||L2(E><G)~

The next proposition asserts a corrector-type result when the above inequality is
actually an equality.

PROPOSITION 2.5. Let (ue)eso be a sequence in L*(Q)) which two-scale converges
in the sense of boundary layers to a limit ug(z',y) € L?(X x G). Assume further that
it two-scale converges strongly, that is,

lim — [[uell 7571 [[uoll
1IN —= || Ue U
2 e L2(Q) = VaEE ollL2(zxq)-

Then,
(i) for any sequence (ve)eso in L?(Q) which two-scale converges in the sense of
boundary layers to a limit vo(z',y) € L*(X x G), one has

1 1
lim = _ ’ / I
lim Quevedﬂc vl /E/Gtm(w s y)vo(a', y)dz'dy;
(il) if uo(a',y) is smooth, say ug € L (G;C()), then

=10 (2.5

In order to investigate the convergence of sequences of functions in H{ (£2), we first
have to define adequate functional spaces for the two-scale limit. Let CZ5 (G) be the

=0.
L3(Q)

lim —

space of smooth functions in G which are Y’-periodic in 3’ and have a compact support
in yn (i.e., they vanish for sufficiently large and small yx but not necessarily on the
whole 0G). Let Hé#(G) be the Sobolev space obtained by completion of C2% (G) with
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respect to the H'(G)-norm. We denote by Hg, ;,.(G) the space of functions which are
“locally” in H&# (G), i.e., which coincide with a function of Hé#(G) in any compact
set of G. We define a Deny-Lions-type space (cf. [18]) D(l)#(G) as the completion of
C2%(G) with respect to the L?(G)N-norm of the gradient

Db, (@) = {z/J(y) € Hly1o(G) |3 ¢ € C%(G) such that

(21) .
im [V = )2y =0}
It is easily seen that a function in Dé#(G) vanishes when yy = 0 but does not

necessarily go to 0 when yy goes to infinity since D] 4(G) contains functions which
grow like % at infinity with o < 1/2. We are now in a position to state our next
result.

PROPOSITION 2.6. Let (uc)eso be a sequence in H}(Q) such that there exists a
constant C, independent of €, for which

1
ﬁ <||u6||L2(Q) + ||VUE||L2(Q)N) < (.

Then, there exists a subsequence, still denoted by €, and a limit uo(z',y) € L*(%; Dg,(G))
such that

1
lim = [ uc(x)p (x', f) dr =0,
e—0 € Q €

lim 1/ Vue(z) -9 (x’, E) dx = L / / Vyuo(z',y) - (', y)da'dy
e=0¢€ Jo € Y Js Ja
for any functions ¢ € L; (G;C(%)) and ¥ € Li (G;C(E)N).

Remark that, in Proposition 2.6, the two-scale limit ug(z’,y) does not belong to
L3(3; HY(Q)) as could be expected. The reason is that only V,ug € L*(X x G), while
up itself has no reason to belong to L?(X x (). Since the proofs of the above results
are very similar to those of the usual two-scale convergence theory, we simply sketch
the proofs of Lemma 2.1, Theorem 2.4, and Proposition 2.6.

Proof of Lemma 2.1. Let us first assume that ¢(a',y) € Li (G;C(%)) has
bounded support in yy; i.e., there exists M > 0 such that

p(@',y) =0if yy > M.

Then, by the change of variables yy = zn /e and for sufficiently small ¢, we have

e Jolo(@', B)Pde = %f?L Js le(a’, x?/» IN) 2 da’ dx y
(22) = OL ‘ fz |SD('CE/7 %’7 yN)|2dl'/dyN
M /
= [y Jsle(@, = yn)|Pda’dyn.
The usual convergence result for oscillating functions in RV~1 (see, e.g., [2] and
references therein) yields that for almost everywhere yn € (0; M)
. < , ! >
lim Y\T, —YN
€

2
1
dx’i*// lp(2',y yn)[Pda’ dy’
e—0 » |Y’| > ’
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P\T, — YN
) €

Therefore, applying the Lebesgue theorem, we deduce that

M
li / / ( , 7 >
1m P\T, —YN
e—0 0 5 €

The density of such functions ¢(2’,y) in Li (G; C’(i)) implies the desired result for
any function in L%, (G;C(%)).

Proof of Theorem 2.4. Using the assumed uniform bound on u., by the Schwarz
inequality we obtain

%/Que(x)go (w’,%) dx’ < C(%/Q ’gp(m’, %)‘2dl‘)%.

Passing to the limit, up to a subsequence, which may depend on ¢ in the left-hand
side and using Lemma 2.1 in the right-hand side, yield

. 1 / xz ! 2 !/ %
Z z < .
lim = /Que(x)w (w E)dm‘ _C(/Z/le(w,y)l dx dy)

Since Li (G; C’(i)) is separable, varying ¢ over a dense countable subset, by a stan-
dard diagonalization process, we can extract a subsequence of € such that (23) is valid
for all functions ¢ in this subset. By density, we conclude that the limit in the left side
of (23), as a function of ¢, defines a continuous linear form in L*(¥ x G). Then, the
classical Riesz representation theorem immediately implies the existence of a function
ug(w,y) € L?(X x G) which satisfies (20). This finishes the proof of Theorem 2.4.

Proof of Proposition 2.6. By application of Theorem 2.4, up to a subsequence,
there exist two limits u(z’,y) € L?(X x G) and £°(2',y) € L?(X x G)V such that u,
and Vu, two-scale converge in the sense of boundary layers to these respective limits;
ie.,

and that

2
da’ <|%] [ max|e(a,y', yn)Pdy’.
Y’ x'eX

2
1

do'dyn = — //Iw(x',yﬁyzv)\zdw’dy-
Y Js Ja

(23)

1 1
(24) lim = [ wuc(x)p (m’, E) dx = —,/ / uw(x',y)p(x', y)dz'dy,
Q € Y Js Ja

e—0 €

(25) lim 1 /Q Vue(x) - (a:’, %) dr = ‘Yl'/| /Z/G&)(z’,y) ~p(ay)da' dy

e—0 €

for any functions ¢ € Li (G;C(%)) and ¢ € Li (G;C(X)"). Integrating by parts in
(25), we obtain

.1 : ;T _
lgr(l) <) ue(x)divyy (:c , z) dx = 0.

In view of (24), this implies that

1 .
‘Y/|/Z/Gu(m’,y)dlvyw(x',y)dx'dy:O.
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Another integration by parts yields that u(x’,y) does not depend on y. On the other
hand, it belongs to L?(X x G) and G is unbounded. Since the only constant which
belongs to L?(G) is zero, we deduce that u = 0. Now, specializing (25) to test
functions v such that divyy = 0 and integrating by parts, we also obtain that

|Y1"\ /2/6:50@/,3” (2!, y)da'dy = 0.

As is well known, the orthogonal of divergence-free fields is exactly the set of gradients
(see Proposition 1.14 in [2] for a precise statement and references). Therefore, there
exists a function ug(2’,y) in L?(3; Dé#(G)) such that & = V,up (we use the space
Dé#(G) since g has no reason to belong to L?(X x G)).

2.2. Convergence analysis. Recall that the original operator S, defined by
(3), acts in the space RN™€) which depends on e and that our strategy was to extend
Se to a fixed space where a convergence analysis is possible. So far, the domain
Q = ¥x]0, L[ was considered periodic of period €Y. Nevertheless, from now on, § is
seen as a periodic domain with a new period GX defined by

GE dléf]0; eK[N71x]0; L],

with K an integer larger than 1. We shall construct an extension of S, well suited
for the previous two-scale convergence “in the sense of boundary layers” with such a
period GX.

REMARK 2.7. As already mentioned, we make no special hypothesis on the se-
quence of small parameters €. However, the periodic arrangement of tubes in ) is
required to be aligned with X in such a way that the first row of periodic cells €Y has
a boundary which coincides with X x {0}. In other words, the first layer of tubes close
to ¥ is at a fived distance § of ¥ x {0} (see Figure 1).

By a rescaling of ratio €, this new period GX corresponds to a finite length
truncation of the new reference cell

GK X kG =)0; K[V 1 x]0; +00[= KV’ x]0; +oc].

In the reference cell GE (see Figure 2) we put infinitely many layers of tubes in the
Nth direction, each layer being made of KV~! tubes. The tubes in GX are denoted
by T}, where j = (j’, jn) is a multi-index such that jx > 1 is an integer, which labels
the corresponding layer in G¥, and j' is a multi-integer in {0,1,..., K —1}"~1, which
locates the tube T} in its layer jy. The fluid part in G is denoted by G*¥, i.e.,

¢k =c"\ | T
0/ <K-1

1<in
To each tube T in G¥ we associate the subcell Y; and the fluid subcell Y =Y\ T;
analogous to Y and Y™, respectively (see Figure 2). The main idea is to attach to
each tube T in GE a different displacement function 5(z’), depending only on the
variable z’ € 3, such that the family (5;(2’)) 0<y/<K-1 belongs to the space L?(3; %),

SIN

where (% is the Hilbert space defined by

2 - - N -2
Uy = (Sj)OSJ’S_K—l 5;€CT, E |5j| < +o00
1SN 0<j <K -1
1<in
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F1G. 1. Cylindrical domain Q =X x (0, L).
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F1G. 2. Reference cell GX.

Remark that this definition of /% implies a decay of the displacement function §; as
JjN goes to +oo. Note also that each family (5;(z')) € L*(%; (%) can be identified
with a function 5(2’,y) € L*(X x GK) which is constant in each subcell Y;.

We now introduce the extended operator BX defined in L?(X; %) by

BE = BES.PF,

where PX and EX are, respectively, projection and extension operators between
RN™) and L?(%;¢2.). To define precisely PX and EX we need the following notation.

DEFINITION 2.8. Let j = (j',jn) denote the multi-index which enumerates all
tubes in the periodic reference cell GX. We use the notation 0 < i< K-—1to
indicate that j' varies in {0,1,..., K —1}¥=1 and jxy > 1 to indicate that jn takes
any positive integer value. Let p = (p1,...,pn) be the multi-integer which enumerates
all the tubes in Q (see Definition 1). The index p is such that the tube T is located
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in the cell whose origin lies at the point ep € Q). To describe its range we use the
notation 1 < p < n(e), where n(e) is the total numbers of tubes in Q. We define
a third multi-integer £/ = ({1,...,0n_1) which enumerates all the periodic reference
cells Gfé/ covering ) (each being identical, up to a translation, to GX ). For simplicity
its range is denoted by 1 < €' < ng(e). These three indices are assumed to be related
by the following one-to-one relationship:

JN = PN,

where E denotes the integer-part function. This yields a one-to-one map between the
tubes (T;) and their location in the cell Gf, at the position j' in the layer jn.
Then, we define a projection

PK . LX(%;65) — RV,

(27) (gj(m/))osi"gijgfl = (gp)1§pgn(e)

given by

— 1 — ! !
5, = §i(x")dx',
P leKY”| (eKY ")y j( )

where (p, j,¢') are related by formula (26) and (e K'Y”), is the cross section of the cell
G,
We also define an extension

EX : RN — L2(5;6%),

(28) (gp)lgpgn(e) — (gj(x/))ogj'gk—l
1<in

given by
gj(‘r/) = Z X(GKY/)e/ (I/)gpa
el

where (p, j,£') are related by formula (26) and x(cxy), (') is the characteristic func-
tion of (eKY’)y. By convention, §, is taken equal to 0 if the values of j and ¢
correspond to a cell truncated by the boundary 9 which therefore contains no tube.
One can easily check that PX and EX are adjoint operators (up to a multiplica-
tive constant) and that the product PXEX is nothing but the identity in RN™(€),
Therefore, the spectrum of BX consists of that of S, and zero as an eigenvalue of in-
finite multiplicity. We summarize these results in the next lemma, the proof of which
is safely left to the reader.
LEMMA 2.9. The operators PX and EX satisfy the following properties;
1. (PE)* = (k) (V- K,
2. (EX)* = (eK)N-DPK,
3. PEEK = Idgnne.
Therefore, the extended operator BE = EXS.PK is self-adjoint and compact in
L3(%;02.). Its spectrum is

o(BE) = o(Se) | J{0}-
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The convergence analysis of this sequence of extended operators BX is amenable
to the two-scale convergence method in the sense of boundary layers (as introduced
in the previous section). It turns out that the corresponding limit operator BX has
a complicated form which can be considerably simplified by introducing the so-called
Bloch wave decomposition. However, we emphasize that this decomposition will affect
only the (N — 1) first variables and not the last one, orthogonal to the boundary X.

LEMMA 2.10. Given a family (5;) o<y <x—1 in (%, there exists a unique family
1<jin
(t;)o<ir<x—1 in 03 such that, for any fived jy,

1<jin
- d . /
Y S, Y gemke
J

0<j’'<K-1 0<y’'<K-1

where E(-) denotes the integer part function and (Y )o<j<x—1 ts the family of subcells
of KY'. Moreover, Parseval’s identity holds true; i.e., for any fized jy,

Yoo sk = KNS G

0<j'<K-1 0<j'<K-1

The proof of Lemma 2.10 is standard (see, e.g., [1]). Remark that % is isomorphic
to (¢2)K""" by identifying an element (8j) o<y <x—1 of €% as a collection of KN~1
1<in

elements (5(; j))jy>1 of £3. Therefore, in Lemma 2.10, one could replace 3 by

()K" Let us define a linear map B’

N-1
(29) B : E%( - (6%)]5_1 L
(85) — (K= t(j’JN))’

where the vectors §; and t; are related as in Lemma 2.10. This Bloch decomposition
B’ (the prime indicates that it concerns only the first (N — 1) variables) is easily seen
to be an isometry from ¢% to ()K" namely, (B')* = (B))~L.

We are now in a position to state the main result on the asymptotic behavior of
BE.

THEOREM 2.11. For each fized K > 1, as € goes to 0, the sequence BX converges
strongly to a limit BX into L*(3;03%); i.e., for any function 3(a') € L*(3;0%) we
have

BE&(2') — BE&(2') in L*(Z;0%) strongly.

By using the Bloch decomposition B’ defined in (29), the operator BX can be diago-
nalized

BX = (B)*DXB' with DX = diag(DX )o<jr<xc—1,

where the entries Dﬁ are self-adjoint continuous (but not compact) operators in

L2(3:63) defined, for any (8jy (2'))jy>1 € L*(3:47), by

DJ (5, (2") = (/ Uj/ﬁd5> ,
Din in>1



BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 359

where uj/ (y) is the unique solution of

—Ayujr =0 mn G*,
(30) 85731.1 = _‘jN iz on FjN7 jN > 17
Ujr = 0 on yn = Oa

_ompdl ! .
Y — e PR Yy (y,yn) Y’ — periodic,

where G* is the fluid part of the semi-infinite band G (see Figure 2).

REMARK 2.12. Of course, the solution uj of (30) depends also on the variable
x’ € ¥ since each displacement §;, (x') depends on x'. Nevertheless, ©' plays the role
of a parameter, since (30) is a partial differential equation in the variable y only. The
limit problem (30) admits a unique solution uj (z',y) in the space L*(3; Djl.,#(G*)),
where D},’#(G*) is a Deny-Lions-type space. More precisely, it is defined as Dy, (G)

n (21), the only difference being that functions in Djl-,#(G*) satisfy a (627”%,)//)
periodicity condition in ', instead of the usual Y’ periodicity. Recall that a func-
tion w(y) satisfying the periodicity condition of the limit problem (30) is said to be
(62”1]7,Y’)-pem'odic in y' because such a function also satisfies the following (gener-
alized) periodicity condition:

w(y + (K',0)) = eQWl%w(y) Yy = (v, yn) and Vk' € ZN 71,

For more details on this class of functions, we refer to [1], [16].

The key of the proof of Theorem 2.11 is the following homogenization result for
the fluid potential when the displacements of the tubes are given in terms of the
projection operator PX. Remark that, in view of definition (27) of PX| such a family
of displacements concentrates near the boundary X x {0} as € goes to 0.

PROPOSITION 2.13. For any §(z') € L*(X; (%) let us define uec = uc(3) as the
unique solution in H'(Q.) of

_Aue =0 mn Qe,
(31) i — (PKS(a')), - onT5, 1<p<ne),
u. =0 on 0N.

Then, u. two scale converges in the sense of boundary layers to 0 and Vu, two-scale
converges in the sense of boundary layers to Vyuo(z',y), where ug(x’,y) is the unique
solution in L*(%, Dé#(G*K)) of

—Ayug =0 in G*K,

Oug _ 2 = .
(32) oL =80 on ry,

Ug = 0 Zf YN = Oa

Yy —uo(2,y,yn) KY'-periodic,

and Vu, two-scale converges strongly, i.e.,

1 , 1 ,
(33) lim — o |Vue|*dx = W/E/GK |Vyuol*da’ dy.

e—0 €
Moreover, if §(x') is a sequence which converges weakly to a limit §(z') in
L2(3;02.), then the sequence of associated solutions u.(5%) two-scale converges in
the sense of boundary layers to 0 and Vuc(5%) two-scale converges in the sense of
boundary layers to Vuo(x',y), where ug is still the solution of (32).
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REMARK 2.14. A priori, the solution ue of (31) is defined only in the fluid domain
Qe which is a varying set as € goes to 0. However, it is a standard matter (see [13])
to build an extension operator X. acting from H' () into H*(Q) such that, for any
ve HY(Q),

X =w1in Qe and | Xv| g1 0) < Cllvllar@,),

where C' is a positive constant independent of €. In what follows, we shall always
identify functions in H'(Q.) (as u.) with their extension in H'(Q) (as Xcu.).

To prove Proposition 2.13 we need two technical lemmas.

LEMMA 2.15. The extension and projection operators EX and PX satisfy the
following estimates:

(i) [IPX5(a) [arnco < Cem 2 |[5(") | 2w, )

(i) [1EE E)llzz(mezy < Cer 1(En)rpenio levne,
where C' is a constant independent of € and the norms are defined by

H(gp)lgpgn(e)”ﬂéNn(f) = Z ‘§p|2a
1<p<n(e)
15(") 22 / S5 P
0<j/<K-1
1<in

Proof. Let us prove (i) (the other inequality (ii) has a similar proof). By definition
of PX,

- 1 . 2
IPEEE) B = D (m 5(a)da')

1<p<n(e) (eKY")

where (p, j, ') are related by formula (26). Applying the Cauchy—Schwarz inequality
and summing over ¢ yield

IPE S o > R f(EKy/ 155 (@")Pda’
(34) 1<p<n(e) 2
Ke)N T fzz |55 (") *d’,

IN

I /\

which is the desired result.
LEMMA 2.16. Let 5%(a’) be a sequence of functions which converges weakly to
§(z') in L*(3;03.). Define a piecewise constant function

ZZ 5KY|/KY/), dx) Xy, (@)

it

where Xy (z) is the characteristic function of the jth subcell of the periodic cell GX,,.

e’ y
Then, G¢ two-scale converges in the sense of boundary layers to a limit @ (x,y) €
L?(2 x GX) defined by

@(w,y) = > F)x, ),

- J
J
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where x_, (y) s the characteristic function of the jth subcell of the reference cell
Y.
J

GE. Moreover, if 5(x') converges strongly to 5(z') in L*(X; (%), then @ two-scale
converges strongly to @ in the sense of boundary layers, i.e.,

1, 1
lim %Ha (@)l 2 = —m= 18°(@, )l L2 (s xar)-

K—=

Proof. The proof is very similar to that of Lemma 3.3.2 in our previous work
[3], so we briefly sketch it. Let @(z’,y) be a suitable smooth test function defined
on ¥ x GX with values in RY such that 4/ — @(2',9,yn) is KY'-periodic and @
vanishes for sufficiently large yy. We check the definition of two-scale convergence:

% Joa(x) - G(a', £)dx
= %ZZ((EK)lN—l fe(KY’)ez g’ej(xl)dx,) : fY;, @la’, ¢)dx
N 7

o £, 50 | o (F fy, 80210 e, (@) .

It is easily seen that for each fixed j the term between brackets converges strongly to
Jy. @', y)dy in L*(X)N. Remark that the sum in j is finite since ¢ has a bounded
J

support in GX. Thus we can pass to the limit and obtain the desired result

K1\1r12j:/25j($’)' </YJ ﬁ(x’,y)dy> da’.

If 5% converges strongly to 5}, the strong two-scale convergence of @(z) is obtained
by a similar proof, replacing in the above computation the test function @ by a¢(x).
Proof of Proposition 2.13. Multiplying (31) by u. and integrating by parts, we

get

Ja. |Vuc]?de = > (P6K§’)p + Jpe uetids
1<p<n(e) k

(35)

IN

I (PE5) lmwnco

uMds .
‘(ffé € )Hnwnm

An easy calculation (see Lemma 2.2.3 in [3] if necessary) shows that

H (/ uJids)
s

and hence, using Lemma 2.15 we conclude that

2
< CeV||VuelZ2 (g,

RNn(e)

/Q |Vue|?dz < Ce||§(x')||2L2(Zﬁ().
A standard Poincaré inequality in Q yields the same estimate for u. in L?(£,) :

|| el < Ol g
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We now apply the method of two-scale convergence for the asymptotic analysis of the
sequence 1., using test functions with G¥ as the periodic cell (since we decided to
consider G¥ to be the reference cell and not G). By virtue of Proposition 2.6 there
exists a subsequence of u. and a limit function ug(z’,y) in L*(%; D(l)#(GK )) such that
(ue, Vue) two-scale converge in the sense of boundary layers to (0, Vyug). Let ¢(z', y)
be a smooth function in L?(3; D, (G*)). Multiplying the equation (31) by ¢(a’, £)
we obtain

1 , T , T
e/SZXQG(a?)VU,E Vyp (J;,e)dx—k/ﬂxﬂﬁ(x)Vuve/go (a:,e)da:

= Z (Pf:?)p . /6 7 (:z:’, %) fids

1<p<n(e)

= %/Q (Xﬂe(x) —1)a(z)- (Vycp (x’, %) + eV (x', %)) dzx,

where xq.(z) is the periodic characteristic function of €. and @¢(x) is a piecewise
constant function defined as in Lemma 2.16 by

S5 (i

je’

v, dx) Xy ().

Remark that both terms involving V. ¢ go to zero with e. Applying Lemma 2.16, we
pass to the two-scale limit in the remaining terms to get

|KY/\/ /V up(x',y) - Vyo(z',y)da'dy = |KY’|/Z/SJ Vyo(z' y)dx'dy

> G*K

which is nothing but the variational formulation of the limit equation (32). A stan-
dard application of the Lax—Milgram lemma yields uniqueness of the solution ug in
L3(%; Dé#(GK)). Thus the entire sequence u. converges to the same limit ug.

The proof of the energy convergence (33) is standard by passing to the two-scale
limit in the right-hand side of (35) since @© two-scale converges strongly in the sense
of Proposition 2.5 (see Proposition 2.2.4 in [3]).

To prove the two-scale convergence of u.(5%) to ug, when 5* converges weakly to §
in L?(X; ¢%), it suffices to repeat the same above arguments since Lemma 2.16 asserts
that @ two-scale converges to @ even if 5% converges weakly. Note that in this case
we do not have the energy convergence.

Proof of Theorem 2.11. Let 5(z') € L*(%;/%) and #* be a sequence which con-
verges weakly to ¢ in L?(3;¢%). Our goal is to prove that

— —

lim <BK S(x )7t€(xl)>lj2(2;£§() = <BK§(x’),t(x')>L2(E;Z%() )

e—0
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By definition of BX, we have

—

<B6K§'(ac’)7 te(x’)>L2(E;€%{) <EEKSEPEK§($/), t_%(;v’)>L2(E;ei)

= (€K)N_1 <SEP6K§(1'/)7PeK{E(x,»RNn(e)

= (EK)Nﬂ< b ( )}N(fpe uc(F)ids) - (PKT),
1<p<n(e P

= K [ Vu(3) - Vu(#)d.

By Proposition 2.13 we know that Vu,(S) two-scale converges strongly in the sense of
boundary layers to V,uo(5) while Vu,(£°) two-scale converges weakly to V,uo(f). By
virtue of Proposition 2.5 we can pass to the limit in the product and we get

—

lim (BX 5(2'), te(x')>L2(E‘£2 )= / V,u0(8) - Vyuo(t)dz'dy,
K »JG*K

e—0

where (%) and ug(f) are solutions of the homogenized problem (32) with 5 and £,
respectively, as the right-hand side. A simple integration by parts shows that

L[ Sl Buo(®s'dy = (B0, 06) s
s JarK s

where the limit operator B¥ is defined by

Ko N\
(36) Bs(x)-(/rl

J

u0(§‘)ﬁds>

< <K-1
1<y

This proves the strong convergence of BX to BX on L?(%;¢2.). Obviously, B is

self-adjoint and continuous but not compact since =’ plays the role of a parameter in

the definition of BX.

It remains to diagonalize B¥ with the help of the Bloch decomposition B’. This
diagonalization process has already been exposed in section 3.3 of our previous pa-
per [3] in a slightly different context. For the sake of brevity, we do not repeat this
standard argument here. Let us simply indicate the three main steps of this Bloch
diagonalization. First, we apply the operator B’ to s(z’) = (gj(l'/))ogj_’/g>f<l_1 which

IN

gives the Bloch decomposition of §(x') with respect to the multi-index j' (not in-
cluding jx). Secondly, plugging this Bloch decomposition in the limit equation (32)
(which holds in G*¥) and using a similar Bloch decomposition of u(5), we decompose
(32) in a family of KN~! equations defined in a single reference cell G*. In a third
step, applying again the Bloch decomposition B’ to formula (36) yields the desired
diagonalization of B¥.

2.3. Analysis of the limit spectrum. In this section we analyze the spectrum
of the limit operator BX and, from the strong convergence of BX to BX, we deduce
the lower semicontinuous convergence of the spectrum o(S.) to the limit spectrum
o(BX). Recall that for any K > 1, the extended operator BX has a spectrum given
by

o(Bf) = o(Se) U {0}.
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Since BX converges strongly to BX in L?(3;¢2.), by virtue of Proposition 2.1.11 in
[3], we have

o(B¥) Con = lintl) o(Se).

From Rellich’s theorem, the strong convergence of the spectral family associated with

BX to that of BX is also easily deduced (see Theorem 3.2.5 in [3]). This gives some

(partial) information on the convergence of eigenvectors that we shall not use below.
In view of Theorem 2.11,

BK = (B/)_lDKB/ with DK = diag(D;,()ogj/SK_l,

where each D;f is a self-adjoint continuous operator in L?(X;¢%). Since B’ is an
isometry, we have

o(B¥)=|J a(Df).
0<j’'<K-1

By the very definition of D]I.,( , the macroscopic variable ' € ¥ plays the role of a

parameter. Therefore, for any fixed value of x’, D]I-,( can be identified with an operator

d, acting in ¢2 which does not depend on z’. Introducing the Bloch parameter
K

0" = % € [0,1]¥=1, this new operator dg: is defined by

dor = 03 — 02,

(37) (gq)qzl = (/ Uug’ - ﬁds) s
T'q g>1

where ug (y) is the unique solution of

—Aug =0 in G*,
6573' =8,-7 onTy, ¢>1,
Ugr = O lf Yn = 0,

y e 20 0, (y  yn) Y -periodic.

In (37) the positive integer ¢ is nothing but the index jy introduced in Definition 2.8.
Clearly, we have

J(D]If) =o(dy).

A

As is well known, the spectrum of a self-adjoint operator can be decomposed in its
discrete part, made of, at most, a countable number of isolated eigenvalues of finite
multiplicities, and its essential part, for which the Weyl criterion applies (see, e.g.,
[25], [33], [34]). The next proposition characterizes the spectrum of dp.

PROPOSITION 2.17. For all 0’ € [0,1]V71, dy is a self-adjoint continuous but
noncompact operator in (3. Labeling the eigenvalues of the discrete spectrum o gisc(dg:)
by decreasing order, each discrete eigenvalue is piecewise continuous in 0'. The es-
sential spectrum is given by

Uess(dG') = U U(A(QI,QN)),

On€[0,1]
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where A(0',0y) is the Bloch homogenized matriz, defined by (12), which is continuous
in 6 €]0,1[V but discontinuous at @ = 0. Moreover, the entire spectrum o(dg:),
considered as a subset of RT, depends continuously on 0’, except at §' = 0.

Because we use the usual convenient labeling of the discrete eigenvalues by de-
creasing order, we can merely prove that they are piecewise continuous. This is due
to the fact that, when 6’ varies, an analytical branch (if any) of discrete eigenvalues
may merge into the essential spectrum: this yields a “jump” in the labeling of dis-
crete eigenvalues. Therefore, one cannot hope to prove a global continuity of these
eigenvalues with such an ordering.

Let us postpone for a moment the proof of Proposition 2.17 and define the so-
called boundary layer spectrum associated with the surface 3:

(38) on ™ U o(dg) Uo(dp).

6'€]0,1[N -1
By virtue of Proposition 2.17, we have
(39) OBloch C Ox.

Therefore oy, also has a band structure since it includes the Bloch spectrum, but
it may include new bands of eigenvalues of og;sc(dgr). It also contains the isolated
eigenvalues of 04;s.(dp). Therefore oy, can contain elements which are not included in
the previous limit spectrum o (S) U 0pioch (see section 1.2). The continuity of o(dy)
with respect to 8’ ensures that oy is the closure of the union of all spectra o(dy/) with
0’ rational.

U U U(d%)zaz.

K>10<j/<K-1

We summarize our results in the following theorem.
THEOREM 2.18. The boundary layer spectrum associated to X is included in the
limit spectrum

0y C 0xo-

REMARK 2.19. Of course oy, is not the complete boundary layer spectrum since
it is concerned only with that part of the spectrum concentrating near 3. A completely
similar analysis has to be done for all the (N — 1)-dimensional surfaces and all other
lower dimensional manifolds (edges, corners, etc.) of which the boundary of Q) is made
up. Then, we shall prove in the next section that the union of all these contributions,
the so-called boundary layer spectrum, plus the usual homogenized spectrum and the
Bloch spectrum, is equal to 0o, at least when € is made up only of entire cells €Y .

Proof of Proposition 2.17. Let us first prove that the essential spectrum of dy is
included in the Bloch spectrum, and, more precisely,

Uess(dG') = U O'(A(GI,QN)),

0<On<1

where A(0) is the usual Bloch homogenized matrix defined in (12). In particular, this
proves that o.ss(dgr) # {0}, so dgs is not compact.
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Let A() be an eigenvalue of A(6) and u(6) be the associated potential solution of

—A,u(6) = 0 myr,
81575?) = A*l(e)!u(e)ﬁds on T,
y — e~2m0 vy (0, ) Y-periodic.

We construct a Weyl sequence u,, associated with the spectral value A(6) by

()
" Tu@)enllegey

where 9, (yn) is a cut-off function defined by

Yn(yn) = YN when 0 < yy <1,
Yn(yn) = 1 when 1 < yy <mn,
Ynlyn) = n+1l—yy whenn<yy<n-+1,
Ynl(yn) = 0 when yy > n+ 1.

By definition, ||un||z2(g+) = 1 and limy, 4 oo [[u(0)Yn ]| 12(G+) = +00. Then, it is easily
checked that, for any ¢ € Dé#(G) (the Deny—Lions-type space defined in (21)),

/G*VumV(pdy:)je);(/lﬂqunﬁds)-(/lﬂqapﬁds)—i-(rn,@,

where 7, is a negligible remainder term in the sense that

fim (Tny )

— =0.
n—+oo ||V p2(geyn

Furthermore, 3, = ([,

r, upds)g>1 converges weakly to 0 in £% since

Jm ([w(@) | p2(g-) = +o0.

Therefore, &, is a Weyl sequence associated with A(f) for the operator dy.. This
proves that A(0) € o.ss(dgr). To prove the converse inclusion,

Oess (dﬁ’) C U O’(A(e/, 9N))7

0<On<1

we consider a Weyl sequence &, for a spectral value A € o¢ss(dg/). Let u, be the
associated potential solution, i.e.,

—Au, =0 in G*,
(40) G = (Fn)g 7 on L'y, g 20,
Up = 0 if YN = O,

y — e 20y (i yn)  Y'-periodic.

Since [|Shllz = 1 and 8, — 0 in 3 weakly, it is easily seen that u, converges to 0
weakly in H!'(G*). Furthermore, since the weak convergence to 0 of 5, implies that
its components (5,)q go to 0 for fixed ¢, it is not difficult to check that, for any
compact set K of G*, u,, converges strongly to 0 in H'(K) (multiply equation (40)
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by ¢u, where ¢ is equal to 1 in K and is compactly supported away from infinity).
Introducing a sequence

Yy,

Uy = —————
" unl L2

where ¢ (yn) is a cut-off function defined by

Yyn)= 0 for yn <0,
Y(yn) = Y~ for 0 < yny <1,
Y(yn) = 1 for yy > 1,

it is straightforward to prove that

/*Vv”Vgodz:%Z(/F

qEZ q

vnﬁds) : ( /F goﬁdS) + (Tns )

for any ¢ € D;ﬁ (B*), where B* is the infinite band Y’ x| — co; +00] perforated by the
periodic arrangement of tubes (T})4ez, and r, is another negligible remainder term
such that

) _
n—+too [Vl p2(pey~
Therefore,
t, = </ v,ﬁds)
Ty q€Z

is a Weyl sequence for an operator similar to dy: but defined in the whole infinite
band B* instead of the semi-infinite band G*. A standard Bloch decomposition with
respect to the variable yx yields that A belongs to <, <1 o(A(0,0n)).

To conclude the proof of Proposition 2.17, it remains to prove that the isolated
eigenvalues of finite multiplicity A(6’) € o4isc(dg/) are piecewise continuous with re-
spect to 0. Let !, be a sequence converging to 6 in |0, 1[¥ =1, Obviously, the sequence
of continuous operators dg; uniformly converges to dp/ in /2. Now, let us invoke a
classical theorem (see, e.g., Theorem 3.1., Chapter 1.3 in [20]) which states that for
any closed curve 7 in the complex plane, which encloses a finite number of eigen-
values of 04;5.(dg’) and does not intersect o(dy ), there exists ng such that for any
n > ng, the curve -y contains the same number of eigenvalues (including multiplicities)
of 7gisc(de: ) and does not intersect o(dp: ). This is nothing but the local continuity of
the eigenvalues of 04;sc(dgr) (enumerated, for example, in decreasing order). Remark
that the continuity of the pth eigenvalue of o4;s.(dg:) breaks down only when one of
the previous eigenvalues (with label between 1 and p— 1) meets the essential spectrum
Oess(dpr) as 0’ varies. In any case, since o.s5(dgps) depends continuously on 6" # 0, this
proves that the entire spectrum o(dy/) depends also continuously on 6’ # 0. The lack
of continuity for o(dy/) at 8’ = 0 is a phenomenon already explained in our previous
work (see Proposition 3.3.4 in [3]).

REMARK 2.20. When the tube T is symmetric in Y (in other words, by reflexion
with respect to the hyperplane [yn = 0], G* yields the infinite periodic array of tubes
B*), it can readily be checked that there is no isolated eigenvalue of finite multiplicity
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for dg:; i.e., dgise(dg) = O for all @ € [0,1)VN=1. If this were not the case, by
symmetry an eigenvalue of 04isc(dp/) would also be an eigenvalue of finite multiplicity
for a similar operator in the infinite band B*, which is impossible since by translation
there exists an infinite number of eigenvectors.

We conclude this section by proving that the eigenvectors corresponding to iso-
lated eigenvalues of finite multiplicity of dy- are localized in the vicinity of the bound-
ary [yn = 0] since they decay exponentially at infinity.

PROPOSITION 2.21. Let A\ be an eigenvalue in og4isc(dgr) and let (55)q>1 be a
corresponding eigenvector. There exists a positive constant a > 0 such that (€*P5y)g>1
belongs to (3.

Proof. The argument is by contradiction of the Weyl property for eigenvalues
in the essential spectrum. For A € ogs.(dg), let § = (8,)4>1 be a corresponding
normalized eigenvector and u(y) the corresponding potential, solution of

—Au = in G*,
ou 2 .2

) =% on Ly g2 1,
u = if yv =0,

y e 20y (y yn)  Y'-periodic.
By definition, for all ¢ > 1, it satisfies
/ u-nids = As,.
Fq
Let us define a sequence (5"),,>¢ in ¢% by
0 ) if ¢ < n,

It is easily seen that 5" converges weakly to 0 in £ with ||5"||,2 = 1. However, since
A does not belong to the essential spectrum of dy., any subsequence of §" cannot be
a Weyl sequence for A\. This implies the existence of a positive constant C' and an
integer ng such that, for any n > ng,

8" = (87)a1 Withgg:{ if ¢ > n.

(42) ldg: 3" — A5" |2 = C > 0.

As usual wu,(y) is the potential associated with §" through an equation similar to
(41). We introduce a smooth cut-off function v, (yn) such that +,, = 0 on all tubes
T, for ¢ < n, and 9, = 1 on all tubes T, for ¢ > n. Let us denote by w,, the bounded
support of Vi, which lies between T;,_; and T;,. Introducing an approximation v,
of the potential w,,, defined by

Un(y) — wn(yN) (u(y) - Cn) with Cp = ﬁ/ u(y)dy,

2pen 15]

we write

dg5" = A§" + /
r

(U, — vp) - ﬁds)

1 g>1
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From (42) we deduce
IV (un = v0)l|L2(G+)yv > C >0 for n > ny.
Using the equations for u and u,, a simple computation yields
(U, — V)V — (u— )V (up — vy)

Z;in |§p|2

Remark that the integral in the right-hand side reduces to w,, since V,, has bounded
support in w,. Applying the Poincaré~Wirtinger inequality in w,, to (u—c,) and (u, —
vn,) (this last term has not zero average in w,, but (43) is invariant by substraction
of a constant to (u, — v,,)), we obtain from (43)

(43) / IV (ty, — vp)|?dy = » Vb, -

Vv w
Hv(un - vn)||L2(G*)N < CW’

2 pen 15l

which implies
(44) Z 15,° < ClIVul 2, )~
p=n

On the other hand, multiplying equation (41) by ¢, (u — ¢,,) and integrating by parts
gives

/ z/)n|Vu|2dy+/ (u—cn)Vu-andyz)\Z|§'p|2.
G- G-

p=n

Applying again the Poincaré-Wirtinger inequality in w,, to (u — ¢,) yields

(45) [ nlVuly < A3 5 + OVl v

p=n

Let us denote by G,, the subset of G* defined by G,, = {y € G*|yn > n}. From (44)
and (45) we deduce

IVl 6,0 < CIVEI 0y < C (IV6 6,8 = 1Vl 0% ) -

n+1

which implies, for n > ng,

C n—no
(16) Vel < (T5g)  IVulaam

Tt is easily seen that (46) implies the desired result.

3. Completeness of the boundary layer spectrum. In this section we as-
sume that €2 is a rectangle with integer dimensions, i.e.,

N
(47) Q = [l L[ and L; eN*.

i=1
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The sequence of small parameters € is also assumed to be
]' *

(48) €, = —, n €N
n

Remark that all the previous results in this paper hold for any type of sequence € going
to zero. From now on, we restrict ourselves to the sequence ¢, since, for any n > 1,
the domain (2 is the union of a finite number of entire periodic cells Y;». However, to
simplify the notation, we shall not indicate the dependence on n and simply denote
by e the particular sequence defined in (48).

Remark that the assumption on the geometry of € can be slightly relaxed. Any
polygonal domain with faces parallel to the axis (i.e., the normal is everywhere one
of the basis vectors) and having vertex with integer coordinates could equally be
considered.

3.1. Presentation of the main result. This section is devoted to the so-called
completeness of the limit spectrum. Recall that in our previous work [3] we proved
that

(49) Occ = U(S) U o Bioch U Oboundary s
where Opoundary 15 defined in (15). In section 2, we proved that
O O Oy,

where oy is the boundary layer spectrum associated with the surface X, defined by
(38). Remark that, due to our hypotheses on the domain 2 and on the sequence e,
the surface ¥ can be any of the faces of €2 defined by

N N
[100:L;(x{0} or  J]I0;Li[x{Li} for1<i<N.
j=1 j=1
J#i JF#i

Of course, the analysis of section 2 can be repeated for any other lower dimensional
manifolds (edges, corners, etc.) which compose the boundary of Q. For 0 < m < N—1,
let us define the m-dimensional parts of 92 as

m N
S = [[10:Legylx JT {zrgy = 00r Loy},
j=1 J=mtl

where 7 is any permutation of the numbers {1,2,..., N}. There are 2N’mCII\\,[_m
m-dimensional manifolds of the type ¥,, .. A simple adaptation of the two-scale
convergence in the sense of boundary layers for such manifolds allows us to prove
that, for any m and T,

Oso O Ox%

m,T

where ox,, . is the spectrum of a family of limit problems posed, not in a semi-
infinite band as in section 2, but rather in a periodic domain bounded in the variables
Tr(1),- -+ Tr(m) and unbounded with respect to the other variables (see section 3.3
for the case of corners in two space dimension). Eventually, defining the union of all
these spectra

(50) oon =] os,...
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we deduce from Theorem 2.18 and from the geometric assumptions (47), (48) that
(51) 0o D 080-

Comparing our results (49) and (51), a completeness result amounts to link the two
definitions of the boundary layer spectrum oo and opoundary-

THEOREM 3.1. For the sequence €, defined by (48), the boundary layer spectrum
satisfies

Oboundary Coaq-

Therefore, the limit spectrum of the sequence S, is precisely made of three parts; the
homogenized, the Bloch, and the boundary layer spectrum

Elig a(Se,) = 0(S) Uopioeh Uoaq,
where the boundary layer spectrum oaq is explicitly defined by (50).

REMARK 3.2. Remark that Theorem 3.1 does not state that Tpoundary, defined by
(15), and opq coincide. Indeed, we have shown in (39) that opq contains the Bloch
spectrum. It is not clear whether opoundary contains the Bloch spectrum too. The
comparison of caq and Opoundary 5 definitely a very difficult question. We suspect
that if the definition of Cpoundary 15 modified in such a way that it contains only limit
eigenvalues corresponding to sequences of eigenvectors which decay exponentially fast
away from the boundary, then it may coincide with that part of coa made of discrete
eigenvalues (which also have exponentially decreasing corresponding eigenvectors).

To prove this completeness result, we need an intermediate result in the spirit of
section 2.

THEOREM 3.3. As in section 2, let Q be a domain defined by

Q =%x]0; L],

with ¥ a bounded open set in RN~ and L > 0. Recall that S} is the extension of S,
to L2(Q)N. Consider a sequence of eigenvalues . and eigenvectors 5 such that

505 = A5 with ||| 2@y =1 and lim A = .
Assume that for all subset w such that @ C 2, we have
(52) lim |5 2wy~ = 0.

Assume further that there exists an (N — 1)-dimensional open set o, witha C X, a
positive number I, with 0 < 1 < L, and a positive constant ¢ such that
(53) Lim {15 L2 (o xjo.apy = ¢ > 0.
Then, X belongs to the boundary layer spectrum associated with the surface 3
A E oy,

where oy, is defined by (38).

The proof of Theorem 3.3 is the focus of the next section. If we admit it for the
moment, as well as its generalizations concerning all other manifolds ¥,, ; making up
the boundary 90, we are in a position to complete the following proof.
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Proof of Theorem 3.1. Let A € 0poundary- By definition there exists a subsequence
(still denoted by €), eigenvalues A, and eigenvectors 5% of S! such that

505 = A5 with || z2v =1 and lim Ae = A,
and, for all subset w satisfying w C €2,
Lim (|5 L2 )y = 0.

If there exists an (N — 1)-dimensional open subset o;, compactly embedded in
H] ! ]O L;], a positive length 0 < I; < L;, a positive constant ¢, and another subse-

quence (still denoted by €) such that
(54) 21{% ||§E||L2(ai><]0,li[)1\’ >c>0 or l% HEEHLZ(U,-X]l,-,Li[)N >c>0,

then, by application of Theorem 3.3, the limit eigenvalue belongs to ggq as desired.
If (54) does not hold true for any such o;,1;, ¢, and subsequence e, it implies that
the L2-norm of 5% concentrates near the lower dimensional edges of the rectangle €.
In this case, we repeat the above argument with an (N — 2)-dimensional open set
included in one of the set ¥ _2 -, and so on up to the 0-dimensional set made of one
of the vertices of Q. A tedious but simple induction argument on the dimension m
shows that there exists at least a dimension 0 < m < N —1, a permutation 7, positive
lengths (I(;))m+1<j<N, & positive constant ¢, and a subsequence € such that

251(1) HEEHLZ(UJ)N >c>0,

with w C Q of the type

w=0X H 10,1y [ or 175y Le ) ) H 105 L)
j=m+1 j=1

Then, applying an adequate generalization of Theorem 3.3, this proves that the limit
eigenvalue belongs to ogq.

3.2. Proof of the completeness. This section is devoted to the proof of Theo-
rem 3.3 which is divided in several lemmas and propositions. Let us begin by recalling
the definition of the associated potential u., solution of

(55) %7:: =51 onTy, 1<p<n(e),
Ue = on 0f).
The spectral equation S = \.5° implies that

56 WeTT = A5,
(56) »
% 1<p<n(e)

By assumption (52), for all subsets w such that @ C Q, we have

lim [[5°[| L2 )~ = 0.
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In other words, all the energy of the eigenvectors §¢ concentrates near the boun-
dary 09. This concentration effect has important consequences on the associated
potential ..

LEMMA 3.4. The sequence u. defined in (55) converges to 0 in H}(Q) weakly and
strongly in L*(Q). Furthermore, u. converges strongly to 0 in Hlloc(Q).

Proof. Multiplying equation (55) by a test function v € Hg () yields

n(e)

/Qe V- Vode =3 5 - (/F Uﬁds) - /Qs“(x)-z‘(a:)dx,

p=1 P
where

n(e)
Z(z) = — Z eiN( . Vv(x)dx) Xy((z).

p=1 ’
It is easily seen that z° converges strongly to —%Vv(m) in L2()V. Since 5* converges
weakly to 0 in L2()" by virtue of (52), we deduce that u. converges to 0 weakly in
H}(Q) and, by the Rellich theorem, strongly in L?*(2). Finally, for any open set w
such that @ C Q, let ¢ be a smooth function with compact support in 2 and equal
to 1 on w. Multiplying (55) by ¢?u. and integrating by parts leads to

n(e)

5T (/ PPucids).

p=1 Fp

(57) / WQ\VUJQdSU = —2/ pu Vi - Vucdr +
Qe

€

Since u, converges weakly to 0 in H}((2), the first term in the right-hand side of (57)
goes to 0 with e. In view of (56), the second term is bounded by

||50||%°°(Q) H?H%Q(supp(g&))?

which goes to 0 by virtue of the assumption (52). Therefore, we deduce from (57)
that Vu, converges strongly to 0 in L?(w)¥. This concludes the proof of Lemma 3.4.

By assumption (53), there exists an (N — 1)-dimensional open set o, with @ C %,
such that the sequence of eigenvectors concentrates partly near o. By translation, one
can always assume that the origin lies inside 0. The strategy of the proof is to rescale
the domain € by the change of variables y = £ and then to transform the sequence
of eigenvectors s¢ in a Weyl sequence for a limit operator. The limit domain will be
RY = {y € RN|yn > 0} since we have carefully choose the origin to belong to o. The
limit fluid domain is denoted by G**°, which is defined by

G =ri\ U 1,

: N
JEZ+

where T; denotes the tube j placed in the subcell Y; (centered at the point j = (j/, jn)
with 5/ € ZN~! and jy € Z,). In this limit domain we define a limit operator B>,
which acts from ¢3° in itself, by

B>*5= </ uﬁds) V5 e l5°,
Fj JEZQJ
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where u(y) is the unique solution in D§(G**) of

“Au=0 inG*,
(58) g—z =3;-n only, jeZ¥
u=0 on RN=1 x {0}.

Recall that elements in D} (G*>) are restrictions to G**° of functions wnin D§(RY)
which, in its turn, is the closure, with respect to the L?-norm of the gradient, of
smooth functions with compact support in Rf .

REMARK 3.5. The limit domain G**° is nothing but the limit as K goes to infinity
of the domain G*¥ defined in section 2.2. By the same token, the Hilbert space (3° is
the limit of (X (it is also equal to lo(Z%;CN)). In some sense the limit operator B>
is also the limit of the operator B¥ defined in Theorem 2.11.

Let ¢ be a smooth function, equal to 1 in w = 0x]0, L[, with compact support
in ¥x] — L; L] (i.e., ¢ vanishes on all faces of Q except on that defined by zx = 0).
We use ¢ to locahze the sequence of eigenvectors s in a vicinity of w. Let us define
a sequence t¢ by

t = E; P (p(2)5(2)),

where E! P! is the projection operator in L%(Q)" on piecewise constant functions (cf.
their definitions (27) and (28)).
Remark that, by assumption (53), the sequence #* satisfies

lgl% ||t€HL2(w)N >c>0.

Let us define G;* as G** rescaled to size €. Let v be the potential in G}* associated
with t¢, defined by

“Av.=0  in G,

(59) %”ne—té i onl%, peZl,
ve=0 onRN L x {0}.

LEMMA 3.6. The sequence v. defined by (59) converges to zero in D§(RY ) weakly
and in H} (RY) strongly.

Proof. The argument is similar to that of Lemma 3.4, except that the Rellich
theorem applies only for compact sets in Rf .

LEMMA 3.7. The difference we = ve —pu. converges strongly to zero in Dé(Rf).

Proof. A simple calculation provides the following key identity:

(60) / ‘vwe|2 :/ Ve - Vwe _/ Vue - v(<,0w5) - V- (unge —wCVue).
RN N

y RY RY RY
By virtue of Lemmas 3.4 and 3.6, u. and w. converge to zero strongly in L? of the

support of ¢. Therefore, the last term in (60) goes to zero with e. On the other hand,
an integration by parts yields

" Vo, - V., — /vus cpwe—z(_:[ (/ ﬁ)—gz.(/;gpweﬁ)].



BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 375

Since ff) * fY€ pspdr and [p(z) — p(z5)| < €||Ve||L~, where xj is the center of
the cube Y which contains x, we obtain

Vo, - Vi, - / Vu, - V(gw,)| < el Volliw |5l sy Vel ot v

Gio

which gives the desired result.
LEMMA 3.8. From Lemma 3.7 we deduce the following approximation result for
the displacement vector t€:
/ veiids — At}

lim E eV
e—0

peZy

2
=0.

Proof. We have

2
& fog (v —puiids| < 5 V(e = pud)lZa
peZy P

||V(U€ - Cpue)H%z(Rf)N7

(61) eZN

IN

which goes to zero as € — 0 by virtue of Lemma 3.7. Furthermore,

2

peZY

2

< e[Vl [Vuel 2@

/ punds — A t6

since, §° being constant in each cell Y},

. 1 1 - .
o~ Yucfids = E—N/ (cp(s) - E—N/ @(t)dt)uends + A (Plps®),.

s

Summing these two estimates yields the desired result.
Now, let us define a sequence 7¢ in £3° by

7 — N/Q(te )pEZN

which plays the role of a Weyl sequence for the limit operator B*.
PRrROPOSITION 3.9. The sequence T¢ satisfies

}1_{% ”FEHKSC >c>0,
and
(62) BT = AT + 7,

where 7 is a remainder term which goes to zero strongly in £5°.
Proof. A simple rescaling in (59) shows that #.(y) = €2 v.(ey) is the unique
solution in D}(G**) of

—Av. =0  in G*>,
(63) %1;;—7' it onT,, peZ¥,
=0 on RN=1 x {0}.
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Furthermore, ||Vy;lj€||L2(G*oo)N = ||Vx1}€HL2(G:oo)N. By deﬁnition,

- _N .
B¢ = (/ vmds) =€ 2 (/ vmds) .
r ~ Ie ~
P peZY P pEZY

Defining 7™ = (FZ)peZﬁ by

we get
BF = \F + 7,

which, by virtue of Lemma 3.8, is the desired result.

To conclude the proof of Theorem 3.3, we remark that either 7¢ converges weakly
in £5° to a nonzero limit 7 (up to a subsequence) or 7¢ converges weakly to 0 in £3°. In
the first case, passing to the limit as € goes to 0, we obtain that 7 # 0is an eigenvector
of B* for A (the limit of the sequence A.). In the latter case, this proves that 7¢ is
a Weyl sequence for the spectral value A which belongs to the essential spectrum of
B. Now, it is a standard matter (see, e.g., [15], [16]) to show, by a Bloch wave
decomposition analogous to that of section 2.3, that the spectrum of B*° is nothing
but limg _, 4+ o(B¥), i.e., the boundary layer spectrum associated with the face X of
Q.

REMARK 3.10. Let us remark that Theorem 3.3 is valid for any choice of the
sequence € and not only for the particular sequence €, defined in (48). The interested
reader will not fail to notice that the present proof of the completeness result is different
from that of our previous work [3]. In this paper, we used the concept of Bloch measures
in order to prove a similar completeness result by means of an energetic method. Here,
we propose a new proof (in a slightly different context), based on a rescaling argument,
which is simpler, although less precise, and which could equally be applied in [3].

3.3. Analysis of the corner spectrum. In section 3.1 the boundary layer
spectrum oyq w